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On many spacetimes one can define four natural Green functions
of the Klein-Gordon equation:

• forward propagator G∨,

• backward propagator G∧,

• Feynman propagator GF,

• antiFeynman propagator GF.

In some rare but important cases they satisfy the identity

GF + GF = G∨ + G∧.

We will then say that the Klein-Gordon equation is special. We
will discuss consequences of this property and describe examples of
special spacetimes.



PART I. FLAT SPACETIME.

Consider first the Klein-Gordon equation on the flat Minkowski
space R1,d−1 wth m2 ≥ 0:

(−� + m2)ψ = 0.

G(x, y) is a Green function of the Klein Gordon equation if

(−�x + m2)G(x, y) = δ(x− y).



There are four Green functions invariant wrt the restricted Poincaré
group:

• the forward/backward propagator

G∨/∧(x, y) :=
1

(2π)4

∫
e−i(x−y)·p

p2 + m2 ± i0 sgn p0
dp,

• the Feynman/anti-Feynman propagator

GF/F(x, y) :=
1

(2π)4

∫
e−i(x−y)·p

p2 + m2 ∓ i0
dp.

Green functions G∨ and G∧ are related to the classical Cauchy
problem, because their support is in the forward, resp. backward

cone. Green functions GF and GF are used in QFT.

They satisfy the identity GF + GF = G∨ + G∧.



Using the above Green functions we can define the following useful
bisolutions of the Klein-Gordon operator:

• the Pauli–Jordan propagator or commutator function

GPJ(x, y) := G∨ −G∧,

• the positive frequency or Wightman 2-point function

G(+)(x, y) :=
1

i
(GF −G∧) =

1

i
(−GF + G∨),

• the negative frequency or anti-Wightman 2-point function

G(−)(x, y) :=
1

i
(−GF + G∧) =

1

i
(GF −G∨).



The following facts are easy to see:

(1) The Klein-Gordon operator K = −� + m2 is essentially self-
adjoint on C∞c (R1,3) in the sense of L2(R1,3).

(2) For s > 1
2, as an operator 〈t〉−sL2(R1,3) → 〈t〉sL2(R1,3), the

Feynman propagator is the boundary value of the resolvent of the
Klein-Gordon operator:

s-lim
ε↘0

(K ∓ iε)−1 = GF/F.

Here 〈t〉 denotes the so-called “Japanese bracket”

〈t〉 :=
√

1 + t2.



After quantization, we obtain an operator–valued distribution
R1,d−1 3 x 7→ ψ∗(x) = ψ(x)∗ satisfying the Klein-Gordon equation
and commutation relations

(−� + m2)ψ∗(x) = 0,

[ψ̂(x), ψ̂∗(y)] = −iGPJ(x, y).

We also have a representation with the state given (Ω| ·Ω) such that

(Ω | ψ̂(x)ψ̂∗(y)Ω) = G(+)(x, y),

(Ω | ψ̂∗(x)ψ̂(y)Ω) = G(−)(x, y).(
Ω
∣∣T(ψ̂(x)ψ̂∗(y)

)
Ω
)

= −iGF(x, y),(
Ω
∣∣T(ψ̂(x)ψ̂∗(y)

)
Ω
)

= iGF(x, y).



PART II. CURVED SPACETIMES.

Consider a curved spacetime M with the metric tensor gµν. Define
the d’Alembertian and the Klein-Gordon operator

−� := −|g|−
1
2∂µ|g|

1
2gµν∂ν, K := −� + m2.

(One could also replace the term m2 with a scalar potential). How
to generalize the well-known propagators from R1,d−1 to generic
spacetimes?



As is well-known, if M is globally hyperbolic, then there are natural
generalizations of the forward/backward propagators. Namely, there
exist unique distributions G∨ and G∧ such that

(−� + m2)ζ∨/∧ = f,

supp ζ∨/∧ ⊂ future/past shadow of supp f

is uniquely solved by

ζ∨/∧(x) :=

∫
G∨/∧(x, y)f (y)|g|

1
2(y) dy.



A natural generalization of the Feynman/antiFeynman propagators
is also possible, but less known and more exotic.

Note that −� is obviously Hermitian (symmetric) on C∞c (M) in

the sense of the Hilbert space L2(M, |g|
1
2). Assume it is essentially

self-adjoint. Then its resolvent (−� + m2)−1 is well defined for
complex m2. For real m2 we set

GF := lim
ε↘0

1

−� + m2 − ıε
, GF := lim

ε↘0

1

−� + m2 + ıε
.

GF(x, y) and GF(x, y) are the corresponding integral kernels.



Let us describe two arguments in favor of this definition.
If M is asymptotically stationary and stable in the future and past

then, at least heuristically,

−iGF(x, y) =

(
Ω+|T

(
ψ̂(x)ψ̂∗(y)

)
Ω−
)(

Ω+|Ω−
) ,

iGF(x, y) =

(
Ω−|T

(
ψ̂(x)ψ̂∗(y)

)
Ω+
)(

Ω−|Ω+
) .

where Ω− and Ω+ is the in vacuum, resp. the out vacuum. These
formulas can be found in the old literature, essentially as definitions

of GF, GF. A more systematic justification can be found in a recent
paper by D.Siemssen and JD.



If we use the formalism of path integrals, then the generating
function is formally defined by

Z(J) :=

∫
eiS(ψ,ψ∗)+iψJ∗+iψ∗JDψDψ∗∫

eiS(ψ,ψ∗)DψDψ∗
.

If the action is quadratic

S(ψ, ψ∗) =

∫ (
∂µψ

∗(x)∂µψ(x) + m2ψ∗(x)ψ(x)
)√
|g|(x) dx,

then we can (rigorously!) evaluate the path integral obtaining

Z(J) = exp
(

i

∫ ∫
J∗(x)GF(x, y)J(y)

√
|g|(x)

√
|g|(y) dx dy

)
.



Essential self-adjointness of the d’Alembertian is easy in some spe-
cial cases:

• stationary spacetimes;

• Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes

• 1+0-dimensional spacetimes

• deSitter and (the universal covering of) anti-deSitter spacetime.

On a class of asymptotically Minkowskian spacetimes essential self-
adjointness was recently proven by Vasy and Nakamura-Taira. Essen-
tial self-adjointness is destroyed by (space-like or time-like) bound-
aries—this can be repaired by imposing by boundary conditions.



Assume now that M is globally hyperbolic and −� is essentially
self-adjoint.

We will say that −� + m2 is special if

GF(x, y) + GF(x, y) = G∨(x, y) + G∧(x, y).

Equivalently, it is special if

supp
(
GF(·, y) + GF(·, y)

)
⊂ causal shadow of{y}.



If the Klein-Gordon equation is special, then the situation is super-
convenient! There exist good techniques to compute the Feynman
and antiFeynman propagators (because they are defined in the frame-
work of operator theory). For instance, on the Minkowski space we
obtain

GF/F(m;x, x′) =
±i

(2π)
d
2

( m2

(x− y)2 ± i0

)d−2
4
Kd−2

2

(
m
√

(x− y)2 ± i0
)
,

In the special situation, the forward/backward propagators can be

computed from the formula G∨/∧(x, y) := θ(±x ∓ y)
(
GF(x, y) +

GF(x, y)
)
.



As usual, we then set GPJ := G∨ − G∧. More interestingly, we
have a natural candidate for the two-point function of a distinguished
state:

(Ω | ψ̂(x)ψ̂∗(y)Ω) =
1

i
(GF −G∧) =

1

i
(−GF + G∨),

(Ω | ψ̂∗(x)ψ̂(y)Ω) =
1

i
(−GF + G∧) =

1

i
(GF −G∨).



PART III. EXAMPLES OF SPECIAL SPACETIMES.

As we discussed above, the Minkowski space is special if m2 ≥ 0.
But it is not if m2 < 0 (in the tachionic case).

Stationary stable Klein-Gordon equations are special. Recall that
stability means that the Hamiltonian is positive definite (which if
we only have a mass term corresponds to m2 ≥ 0). (This is al-
most obvious if there is no electrostatic potentials, otherwise see
JD-D.Siemssen).



Consider a 1 + 0 dimensional spacetime. In view of further appli-
cations, assume that it is perturbed by a time-dependent potential.
Thus the Klein-Gordon operator has the form of a 1-dimensional
Schrödinger operator

H := −∂2
t + V (t).

Then one can show it is special if H is reflectionless at the energy
m2.

For instance, the symmetric Scarf Hamiltonian

−∂2
t −

α2 − 1
4

cosh2 t

is reflectionless at all energies for α ∈ Z + 1
2.



Let us sketch the theory of Green functions of the 1-dimensional Schrödinger
operator. Suppose ψ1, ψ2 solve

(H + k2)ψi(t) = 0, i = 1, 2.

Then their Wronskian

W(ψ1, ψ2) := ψ1(t)ψ′2(t)− ψ′1(t)ψ2(t)

does not depend on t.
The function

G↔(−k2; t, s) :=
1

W(ψ1, ψ2)

(
ψ1(t)ψ2(s)− ψ2(t)ψ1(s)

)
does not depend on the choice of ψ1, ψ2 and defines the so-called canonical biso-
lution, the analog of the Pauli Jordan propagator. From G↔ we can define the
forward and backward Green functions:

G→(−k2; t, s) := G↔(−k2, t, s)θ(t− s),
G←(−k2; t, s) := −G↔(−k2, t, s)θ(s− t).



For Re k > 0 we define the left and right Jost solutions to be the unique solutions
of

(H + k2)ψ±(t, k) = 0, ψ±(t, k) ∼ e∓tk, ±t→∞.
We also introduce the Jost function

W(k) :=W
(
ψ+(·, k), ψ−(·, k)

)
.

The resolvent of H, denoted G(−k2) := (H + k2)−1 has the integral kernel

G(−k2; t, s) =
1

W(k2)

(
θ(t− s)ψ+(t, k)ψ−(s, k)− θ(s− t)ψ−(t, k)ψ+(s, k)

)
.

We say that H is reflectionless if there exist functions T (±ip) such that

ψ+(±ip) = T (±ip)ψ−(∓ip).



The deSitter space is defined as the submanifold of the d + 1-dimensional
Minkowski ambient space:

dSd := {X ∈ Rd+1 | −X2
0 + X2

1 + · · · + X2
d = 1}.

One can look for the Feynman propagator by solving the equation

(−�x + m2)GF
dS(x, y) = δ(x− y),

and requiring that GF
dS(x, y) = G(w), where w = X · Y is the product of the

vectors in the ambient space. We obtain the Gegenbauer equation(
(1− w2)∂2

w − dw∂w − (d−1
2 )2 + m2

)
G(w) = 0.

We demand the singularities of GF
dS are analogous to those of the Feynman prop-

agator on the Minkowski space.



Assuming m > d−1
2 and setting ν :=

√
m2 − (d−1

2 )2 we obtain

G
F/F
dS (m;x, x′) = ±i

Γ(d−1
2 + iν)Γ(d−1

2 − iν)

(4π)
d
2

Sd
2−1,iν

(
− w ± i0

)
.

Above, Sα,ν is the Gegenbauer function regular at 1 and equal 1
Γ(α+1) there. It

is special! We can compute forward/backward propagators, and the distinguished
two-point function, called the Euclidean state (because it is obtained by the Wick
rotation from the Euclidean sphere).

Note that the deSitter space is quite pathological—in particular it is not asymp-
totically stationary, and the Euclidean state is neither the in state nor the out
state.



There is an alternative approach to the deSitter space based on global coordinates

X0 = sinh t, Xi = cosh tx̂i, x̂ ∈ Sd−1

yielding the metric − dt2 + cosh2 t dΩ2. This has an FLRW form and yields the
Schrödinger operator

−∂2
t −

(
d−2

2

)2 − 1
4 −∆Sd−1

cosh2 t
+
(
d−1

2

)2
.

The spectrum of −∆Sd−1 is {l(l+ d− 2) : l = 0, 1, 2, . . . }, hence we obtain the
symmetric Scarf potential with α = d−2

2 + l. Thus all modes are reflectionless iff
d is odd. Consequently, all modes are special iff d is odd, and they are not if d is
even.

Thus there seems to be a discrepancy with the global approach! However, these
two approaches are quite different.



The Anti-deSitter space is defined as

AdSd := {(X, Y ) ∈ R2 × Rd−1 : −X2
1 −X2

2 + Y 2
1 + · · · + Y 2

d−1 = −1}.
It is stationary, however has timelike loops. By taking the universal covering
we remove timelike loops. Unfortunately, it is still is not globally hyperbolic: it
has trajectories that escape to infinity in finite time. To understand its wave
propagation we introduce the coordinates

X1 =
cos t

cos ρ
, X2 =

sin t

cos ρ
, Xi = tan ρx̂i;

with the metric
1

cos2 ρ
(− dt2 + dρ2 + sin2 ρ dΩ2).

Now the Klein-Gordon operator becomes

(tan ρ)
d−2

2 (∆−m2)(tan ρ)−
d−2

2

= cos2 ρ
(
− ∂2

t + ∂2
ρ −

(
d−3

2

)2 − 1
4 −∆Sd−2

sin2 ρ
−
(
d−1

2 )2 − 1
4 + m2

cos2 ρ

)
.



Thus the spatial part of the d’Alembertian is given by the trigonometric Pöschl-
Teller Hamiltonian

H := −∂2
ρ +

α2 − 1
4

sin2 ρ
+
β2 − 1

4

cos2 ρ
.

This Hamiltonian is essentially self-adjoint if α2 ≥ 1 and β2 ≥ 1, and has a
positive Friedrichs extension if α2 ≥ 0 and β2 ≥ 0. Thus, unless m2 < −(d−1

2 )2,
by taking the Friedrichs extension we obtain a well defined dynamics, and we can
define the forward and backward propagators.

The d’Alembertian is essentially self-adjoint. Again, to find the Feynman prop-
agator we set w := X ·X ′ and solve the Gegenbauer equation obtaining

G
F/F
AdS

(
m;x, x′

)
= ±i

√
πΓ(d−1

2 + ν)
√

2(2π)
d
22ν

Zd
2−1,ν

(
− w ± i0

)
,

where Zα,λ is the Gegenbauer function behaving as w−
1
2−α−λ

Γ(λ+1) at w → +∞.

Thus properly interpreted Anti-deSitter space is also special!
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