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Consider the Euclidean space Rd and the hyperbolic space and sphere in dimension d:

Hd := {x ∈ R1+d | [x|x] := x2
0 − ~x2 = 1}, Sd := {x ∈ R1+d | (x|x) := x2

0 + ~x2 = 1},

and the operators

Hd := −∆d, Hh
d := −∆h

d −
(
d−1

2

)2
, Hs

d := −∆s
d +

(
d−1

2

)2
,

with the Laplace-Beltrami operators ∆d, ∆h
d , ∆s

d on Rd, Hd, Sd. Their spectra are

σ(Hd) = σ(Hh
d ) = [0,∞[, σ(Hs

d) =
{(
l + d−1

2

)2 | l = 0, 1, . . .
}
⊂ [0,∞[.

We want to describe point-like perturbations of H•d + β2, Re(β) > 0, in any dimension.

In dimensions d ≥ 4, @ point-like perturbations because ∆d is ess. s.a. on C∞c (Rd \ 0).

After a renormalization, one can define objects that can be interpreted
as Green functions in some sense.
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Point-like perturbations

The generalized integral

Green functions in arbitrary dimensions



4/17

Outline Point-like perturbations The generalized integral Green functions in arbitrary dimensions

Green functions of the unperturbed operators

Let Re(β) > 0 and denote the integral kernels of
(
H•d + β2

)−1
by G•d(−β2;x, x′). Then

Gd(−β2;x, x′) = (2π)−
d
2

(
β

|x−x′|
) d

2−1
K d

2−1

(
β|x− x′|

)
,

Ghd(−β2;x, x′) =

√
πΓ(d−1

2 + β)
√

2(2π)
d
2 2β

Z d
2−1,β

(
[x|x′]

)
,

Gsd(−β2;x, x′) =
Γ(d−1

2 + iβ)Γ(d−1
2 − iβ)

(4π)
d
2

S d
2−1,iβ

(
− (x|x′)

)
.

Kν(z) is the MacDonald function (or modified Bessel function of the 2nd kind).
Zα,λ(z) and Sα,λ(z) are Gegenbauer functions:

Zα,λ(z) =
(z ± 1)−

1
2−α−λ

Γ(1 + λ)
2F1

(1

2
+ λ,

1

2
+ λ+ α; 1 + 2λ;

2

1± z

)
,

Sα,λ(z) =
1

Γ(1 + α)
2F1

(1

2
+ α+ λ,

1

2
+ α− λ;α+ 1;

1− z
2

)
.
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Point potentials

Suppose that Hγ
d is a self-adjoint extension of Hd restricted to C∞c (Rd \ 0).

By the resolvent identities, the Green function of Hγ
d should satisfy

(−∆x − z)Gγd(z, x, x′) = δ(x− x′), x 6= 0,

Gγd(z;x, x′) = Gγd(z;x′, x),

∂zG
γ
d(z;x, x′) = −

∫
Gγd(z;x, y)Gγd(z; y, x′)dy.

This is solved by a Krein type resolvent

Gγd(z;x, x′) = Gd(z;x, x
′) +

Gd(z;x, 0)Gd(z; 0, x′)

γ + Σd(z)
,

where the self-energy Σd(z) is defined up to an integration constant (if it is defined):

∂zΣd(z) = −σd(z) = −
∫
Rd
Gd(z; 0, y)2dy.
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The integral σd(z) converges only in dimensions d = 1, 2, 3.

It diverges if d ≥ 4, reflecting the fact that ∆d is ess. s.a. on C∞c (Rd \ 0) for d ≥ 4.

We will construct renormalized Green functions by giving a meaning to σd(z) in any dimension.

There will occur anomalies. These introduce an ambiguity in the construction, corresponding
to a renormalization freedom.

(The curved cases are analogous.)
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Definition

Let a ∈ R. A function f on ]a,∞[ is integrable in the generalized sense if it is integrable on
]a+ 1,∞[ and there exists a finite set Ω ⊂ C and complex coefficients (fk)k∈Ω s.t.

f −
∑
k∈Ω

fk(r − a)k

is integrable on ]a, a+ 1[. We define

gen

∫ ∞
a

f(r)dr :=
∑

k∈Ω\{−1}

fk
k + 1

+

∫ a+1

a

(
f(r)−

∑
k∈Ω

fk(r − a)k
)

dr +

∫ ∞
a+1

f(r)dr.

The generalized integral is a linear continuation of the standard integral.
(It reduces to the latter if f is integrable.)
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The idea of the generalized integral goes back to Hadamard and Riesz. It is . . .

• . . . related to the extension of homogeneous distributions and the barred integral of Lesch.

• . . . translation invariant:

gen

∫ ∞
a

f(r)dr = gen

∫ ∞
a−b

f(u+ b)du, b ∈ R.

• . . . invariant with respect to power transformations:

gen

∫ ∞
0

f(r)dr = gen

∫ ∞
0

f(uα)αuα−1du, α > 0.

• . . . has (in general) a scaling anomaly:

gen

∫ ∞
0

f(αu)αdu = gen

∫ ∞
0

f(r)dr − f−1 lnα, α > 0.
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In particular, gen
∫

is coordinate dependent. More general:

gen

∫ ∞
0

f(g(u))g′(u)du− gen

∫ ∞
0

f(r)dr = −f−1 ln g′(0) +
∑

l∈(N+1)∩Ω

cl(g) f−l,

for g a well-behaved coordinate trf. with g(0) = 0, g′(0) 6= 0.

cl(g) are g-dependent constants, which depend on finitely many g(n)(0).

Definition

The generalized integral is called anomalous if there is k ∈ N s.t. f−k 6= 0.

The generalized integral with a specified coordinate chooses a distinguished renormalization.
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One often encounters functions that depend on an additional parameter α, which satisfy

gen

∫ ∞

0

f(r, α)dr =

N∑
n=0

fn(α)

α+ n+ 1
+

∫ 1

0

(
f(r, α)−

N∑
n=0

rα+nfn(α)
)
dr +

∫ ∞

1

f(r, α)dr (1)

for −α /∈ {1, . . . , N}, s.t. the RHS is holomorphic in α away from the poles at −1, . . . ,−N .

Non-anomalous case

In the non-anomalous case, (1) can be computed by analytic continuation from the region of α
where the generalized integral coincides with the standard integral.
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One often encounters functions that depend on an additional parameter α, which satisfy

gen

∫ ∞

0

f(r, α)dr =

N∑
n=0

fn(α)

α+ n+ 1
+

∫ 1

0

(
f(r, α)−

N∑
n=0

rα+nfn(α)
)
dr +

∫ ∞

1

f(r, α)dr (1)

for −α /∈ {1, . . . , N}, s.t. the RHS is holomorphic in α away from the poles at −1, . . . ,−N .

Anomalous case: dimensional regularization

Let m ∈ {1, . . . , N}. The RHS of (1) has a simple pole at α = −m with residue fm−1(−m).

Its finite part is fp
α→−m

gen

∫ ∞
0

f(r, α)dr = lim
α→−m

(
gen

∫ ∞
0

f(r, α)dr − fm−1(−m)

α+m

)

and gen

∫ ∞
0

f(r,−m)dr = fpα→−mgen

∫
f(r, α)dr − f ′m−1(−m).
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Computation of the self-energies

The self energies Σ•d(ρ) are determined via

∂ρΣd(ρ) =
ρ
d−2
2 π

d
2

(2π)dΓ(d2 )
gen

∫ ∞
0

K d
2−1(
√
ρr)2dr2,

∂ρΣ
h
d(ρ) =

πΓ
(
d−1

2 +
√
ρ
)2

22
√
ρ+1(4π)

d
2 Γ
(
d
2

) gen

∫ ∞
1

Zd
2−1,

√
ρ
(w)2(w2 − 1)

d
2−1d2w,

∂ρΣ
s
d(ρ) =

Γ
(
d−1

2 + i
√
ρ
)2

Γ
(
d−1

2 − i
√
ρ
)2

(4π)
d
2 Γ
(
d
2

) gen

∫ 1

−1

Sd
2−1,i

√
ρ
(w)2(1− w2)

d
2−1d2w.

In all three cases:

• For d = 1, 2, 3, the generalized integral coincides with the standard integral.

• For odd d ≥ 5, the generalized integral can be computed by analytic continuation.

• For even d ≥ 4, the generalized integral is anomalous.
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We consider the flat case (the curved cases are analogous but more complicated). Then

Σd(β
2) =


− 1

2β d = 1;
ln(β2)

4π d = 2;
β
4π d = 3.

In higher dimension, application of the generalized integral yields

Σd(β
2) =


(−1)

d+1
2 βd−2

(4π)
d−1
2 2( 1

2 ) d−1
2

, d odd;

(−1)
d
2
+1βd−2

(4π)
d
2 ( d2−1)!

(
2− 2ψ

(
d
2

)
+ ln β2

4

)
, d even.
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Regularized Green functions

Recall the the Krein-type formula: G•,γd (z;x, x′) = G•d(z;x, x
′) +

G•d(z;x, 0)G•d(z; 0, x′)

γ + Σ•d(z)
.

In the Euclidean case, this yields

Gγd(−β2;x, x′) =



e−β|x−x
′|

2β + e−β|x|e−β|x
′|

(2β)2(γ− 1
2β )

, d = 1;

K0(β|x−x′|)
2π + K0(β|x|)K0(β|x′|)

(2π)2(γ+ ln β2

4π )
, d = 2;

e−β|x−x
′|

4π|x−x′| + e−β|x|e−β|x
′|

(4π)2|x||x′|(γ+ β
4π )

, d = 3,

or in any dimension

Gγd(−β2;x, x′) =
1

(2π)
d
2

( β

|x− x′|

) d
2−1

K d
2−1

(
β|x− x′|

)
+

1

(2π)d

( β2

|x||x′|

) d
2−1K d

2−1(β|x|)K d
2−1(β|x′|)

γ + Σd(β2)
.
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The perturbed Green functions on Hd and Sd can also be computed explicitly.

Then it is easy to find the Green functions on the respective spaces with curvature ± 1
R2 .

The latter converge to the flat Green function if R becomes large.

This is due to the asymptotics of Gegenbauer functions,

πe−πβ(sin θ)α+ 1
2

2αθα+ 1
2

Sα,±iβ(− cos θ) = (θβ)−αKα(βθ)
(
1 +O(β−1)

)
;

√
πΓ( 1

2 − α+ λ)(sinh θ)α+ 1
2

2λ+ 1
2 θα+ 1

2

Zα,λ(cosh θ) = (λθ)−αKα(λθ)
(
1 +O(λ−1)

)
,

and of the respective generalized integrals.

It is non-trivial that asymptotics of the integrand imply asymptotics of the generalized integral.
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Poles of the perturbed Green function on the sphere

The perturbed Green functions have additional poles, caused by the vanishing of γ + Σ•d(β
2).

On Rd and Hd and in d = 1, 2, 3, they correspond to one new bound state. For d ≥ 4, the
situation is more complicated but not very rich.

On Sd resp. SdR, the situation is more interesting because −∆s
d has discrete spectrum.

One finds: Gs,γd,R(z) possess a sequence of poles indexed by l ∈ N0.

The leading correction to the unperturbed eigenvalues
ω2
d,l

R2 , ωd,l := d−1
2 + l, is always ∼ R−d.
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Interpretation of the Green functions in higher dimensions

Suppose that V is a potential with narrow support.

If GVd (−β2;x, x′) is the integral kernel of (β2 −∆d + V )−1, then Gγd(−β2;x, x′) should
approximate GVd (−β2;x, x′) in a suitable sense.

Renormalized Green functions as limits of true Green functions

In the flat case, we know that Gγd(−β2;x, x′) can be seen as limit of Green functions of
suitably scaled rank-one perturbations Vε := |fε)(gε|, which act on ψ ∈ L2(Rd) as(

|fε)(gε|ψ
)

(x) := fε(x)

∫
gε(y)ψ(y)dy.

There are renormalization ambiguities corresponding to subleading polynomials in the energy.
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Thank you for your attention!
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