The master Dyson-Schwinger equation and the Wilsonian renormalization group flows in a generally covariant setting

András LÁSZLÓ

laszlo.andras@wigner.hu
Wigner RCP, Budapest

LQP47 Poznan, 21-22 September 2023

Outline

- I. On Wilsonian regularized Feynman functional integral formulation:
 - Can be substituted by regularized master Dyson-Schwinger equation for correlators.
 - For conformally invariant or flat spacetime Lagrangians, showed an existence condition for regularized MDS solutions, provides convergent iterative solver method.

[Class.Quant.Grav.39(2022)185004]

- II. On Wilsonian renormalization group flows of correlators:
 - They form a topological vector space which is Hausdorff, locally convex, complete, nuclear, semi-Montel, Schwartz.
 - On flat spacetime for bosonic fields: in bijection with distributional correlators.

[arXiv:2303.03740 with Zsigmond Tarcsay]

Part I:

On Wilsonian regularized Feynman functional integral formulation

Followed guidelines

Do not use (unless emphasized):

- Structures specific to an affine spacetime manifold.
- Known fixed spacetime metric / causal structure.
- Known splitting of Lagrangian to free + interaction term.

Consequences:

- Cannot go to momentum space, have to stay in spacetime description.
- Cannot refer to any affine property of Minkowski spacetime, e.g. asymptotics. (No Schwartz functions.)
- Cannot use Wick rotation to Euclidean signature metric.
- Even if Wick rotated, no free + interaction splitting, so no Gaussian Feynman measure.
- Can only use generic, differential geometrically natural objects.

\mathcal{M} a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet).	

 \mathcal{M} a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet).

 $V(\mathcal{M})$ a vector bundle over it (its smooth sections are matter fields + metric if dynamical).

 \mathcal{M} a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet).

 $V(\mathcal{M})$ a vector bundle over it (its smooth sections are matter fields + metric if dynamical).

Field configurations:

$$\underbrace{(v,\nabla)}_{=: \psi} \in \underbrace{\Gamma\Big(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}\big(V(\mathcal{M})\big)\Big)}_{=: \mathcal{E}}$$

Real topological affine space with the \mathcal{E} smooth function topology.

 \mathcal{M} a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet).

 $V(\mathcal{M})$ a vector bundle over it (its smooth sections are matter fields + metric if dynamical).

Field configurations:

$$\underbrace{(v,\nabla)}_{=: \psi} \in \underbrace{\Gamma\Big(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}\big(V(\mathcal{M})\big)\Big)}_{=: \mathcal{E}}$$

Real topological affine space with the \mathcal{E} smooth function topology.

Field variations:

$$\underbrace{(\delta v, \delta C)}_{=: \delta \psi} \in \underbrace{\Gamma\Big(V(\mathcal{M}) \times_{\mathcal{M}} T^*(\mathcal{M}) \otimes V(\mathcal{M}) \otimes V^*(\mathcal{M})\Big)}_{=: \mathcal{E}}$$

Real topological vector space with the \mathcal{E} smooth function topology.

 \mathcal{M} a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet).

 $V(\mathcal{M})$ a vector bundle over it (its smooth sections are matter fields + metric if dynamical).

Field configurations:

$$\underbrace{(v,\nabla)}_{=: \psi} \in \underbrace{\Gamma\Big(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}\big(V(\mathcal{M})\big)\Big)}_{=: \mathcal{E}}$$

Real topological affine space with the \mathcal{E} smooth function topology.

Field variations:

$$\underbrace{(\delta v, \delta C)}_{=: \delta \psi} \in \underbrace{\Gamma\Big(V(\mathcal{M}) \times_{\mathcal{M}} T^*(\mathcal{M}) \otimes V(\mathcal{M}) \otimes V^*(\mathcal{M})\Big)}_{=: \mathcal{E}}$$

Real topological vector space with the \mathcal{E} smooth function topology.

Test field variations: \mathcal{D} , the compactly supported ones from \mathcal{E} with \mathcal{D} test function topology.

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from \mathcal{E} to \mathcal{E} , and take $J_1,...,J_n \in \mathcal{E}'$. Then, $\psi \mapsto (J_1|\psi-\psi_0) \cdot ... \cdot (J_n|\psi-\psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from \mathcal{E} to \mathcal{E} , and take $J_1,...,J_n \in \mathcal{E}'$. Then, $\psi \mapsto (J_1|\psi-\psi_0) \cdot ... \cdot (J_n|\psi-\psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Feynman type quantum vacuum expectation value of this is postulated as:

$$\int_{\psi \in \boldsymbol{\mathcal{E}}} (J_1 | \psi - \psi_0) \cdot \dots \cdot (J_n | \psi - \psi_0) \quad e^{\frac{\mathbf{i}}{\hbar} S(\psi)} \, d\lambda(\psi) \quad / \int_{\psi \in \boldsymbol{\mathcal{E}}} e^{\frac{\mathbf{i}}{\hbar} S(\psi)} \, d\lambda(\psi)$$

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from \mathcal{E} to \mathcal{E} , and take $J_1, ..., J_n \in \mathcal{E}'$. Then, $\psi \mapsto (J_1|\psi-\psi_0) \cdot ... \cdot (J_n|\psi-\psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Feynman type quantum vacuum expectation value of this is postulated as:

$$\int_{\psi \in \boldsymbol{\mathcal{E}}} (J_1 | \psi - \psi_0) \cdot \dots \cdot (J_n | \psi - \psi_0) \quad e^{\frac{\mathbf{i}}{\hbar} S(\psi)} \, d\lambda(\psi) \quad / \int_{\psi \in \boldsymbol{\mathcal{E}}} e^{\frac{\mathbf{i}}{\hbar} S(\psi)} \, d\lambda(\psi)$$

Partition function often invoked to book-keep these (formal Fourier transform of $e^{\frac{i}{\hbar}S} \lambda$):

$$Z_{\psi_0}: \quad \mathcal{E}' \longrightarrow \mathbb{C}, \quad J \longmapsto Z_{\psi_0}(J) := \int_{\psi \in \mathbf{\mathcal{E}}} e^{i (J|\psi - \psi_0)} e^{\frac{i}{\hbar}S(\psi)} d\lambda(\psi),$$

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from \mathcal{E} to \mathcal{E} , and take $J_1,...,J_n \in \mathcal{E}'$. Then, $\psi \mapsto (J_1|\psi-\psi_0) \cdot ... \cdot (J_n|\psi-\psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Feynman type quantum vacuum expectation value of this is postulated as:

$$\int_{\psi \in \boldsymbol{\mathcal{E}}} (J_1 | \psi - \psi_0) \cdot \dots \cdot (J_n | \psi - \psi_0) \quad e^{\frac{\mathbf{i}}{\hbar} S(\psi)} \, d\lambda(\psi) \quad / \int_{\psi \in \boldsymbol{\mathcal{E}}} e^{\frac{\mathbf{i}}{\hbar} S(\psi)} \, d\lambda(\psi)$$

Partition function often invoked to book-keep these (formal Fourier transform of $e^{\frac{i}{\hbar}S} \lambda$):

$$Z_{\psi_0}: \quad \mathcal{E}' \longrightarrow \mathbb{C}, \quad J \longmapsto Z_{\psi_0}(J) := \int_{\psi \in \mathbf{\mathcal{E}}} e^{i (J|\psi - \psi_0)} e^{\frac{i}{\hbar}S(\psi)} d\lambda(\psi),$$

and from this one can define

$$G_{\psi_0}^{(n)} := \left((-i)^n \frac{1}{Z_{\psi_0}(J)} \partial_J^{(n)} Z_{\psi_0}(J) \right) \Big|_{J=0}$$

n-field correlator, and their collection $G_{\psi_0} := \left(G_{\psi_0}^{(0)}, G_{\psi_0}^{(1)}, ..., G_{\psi_0}^{(n)}, ...\right) \in \bigoplus_{n \in \mathbb{N}_0}^n \mathcal{E}.$

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from \mathcal{E} to \mathcal{E} , and take $J_1,...,J_n \in \mathcal{E}'$. Then, $\psi \mapsto (J_1|\psi-\psi_0) \cdot ... \cdot (J_n|\psi-\psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Feynman type quantum vacuum expectation value of this is postulated as:

$$\int_{\psi \in \boldsymbol{\mathcal{E}}} (J_1 | \psi - \psi_0) \cdot \dots \cdot (J_n | \psi - \psi_0) \quad e^{\frac{\mathbf{i}}{\hbar} S(\psi)} \, d\lambda(\psi) \quad / \int_{\psi \in \boldsymbol{\mathcal{E}}} e^{\frac{\mathbf{i}}{\hbar} S(\psi)} \, d\lambda(\psi)$$

Partition function often invoked to book-keep these (formal Fourier transform of $e^{\frac{i}{\hbar}S} \lambda$):

$$Z_{\psi_0}: \quad \mathcal{E}' \longrightarrow \mathbb{C}, \quad J \longmapsto Z_{\psi_0}(J) := \int_{\psi \in \mathbf{\mathcal{E}}} e^{i (J|\psi - \psi_0)} e^{\frac{i}{\hbar}S(\psi)} d\lambda(\psi),$$

and from this one can define

$$G_{\psi_0}^{(n)} := \left((-i)^n \frac{1}{Z_{\psi_0}(J)} \partial_J^{(n)} Z_{\psi_0}(J) \right) \Big|_{J=0}$$

n-field correlator, and their collection $G_{\psi_0}:=\left(G_{\psi_0}^{(0)},G_{\psi_0}^{(1)},...,G_{\psi_0}^{(n)},...
ight) \in \bigoplus_{n\in\mathbb{N}_0}^n \stackrel{n}{\otimes} \mathcal{E}.$

_Above quantum expectation value expressable via distribution pairing: $ig(J_1 \otimes ... \otimes J_n \ ig| \ G_{\psi_0}^{(n)}ig)$. ___

- No "Lebesgue" measure λ in infinite dimensions.
- Neither $e^{\frac{i}{\hbar}S}\lambda$ is meaningful. (Can be repaired to some extent in Euclidean signature.)
- Neither the Fourier transform of this undefined measure is meaningful.

- No "Lebesgue" measure λ in infinite dimensions.
- Neither $e^{\frac{1}{\hbar}S}\lambda$ is meaningful. (Can be repaired to some extent in Euclidean signature.)
- Neither the Fourier transform of this undefined measure is meaningful.

Rules in informal QFT:

- as if λ existed as *translation invariant* (Lebesgue) measure,
- as if $e^{\frac{i}{\hbar}S}\lambda$ existed as *finite measure*, with *finite moments* and *analytic Fourier transform*.

- No "Lebesgue" measure λ in infinite dimensions.
- Neither $e^{\frac{i}{\hbar}S}\lambda$ is meaningful. (Can be repaired to some extent in Euclidean signature.)
- Neither the Fourier transform of this undefined measure is meaningful.

Rules in informal QFT:

- as if λ existed as *translation invariant* (Lebesgue) measure,
- as if $e^{\frac{i}{\hbar}S}\lambda$ existed as *finite measure*, with *finite moments* and *analytic Fourier transform*.

Textbook "theorem": because of above rules, one has

 $Z: \mathcal{E}' \to \mathbb{C}$ is Fourier transform of $e^{\frac{i}{\hbar}S}\lambda$ " \iff " it satisfies master-Dyson-Schwinger eq

$$\left(\mathbf{E}((-\mathrm{i})\partial_J + \psi_0) + \hbar J\right) Z(J) = 0 \quad (\forall J \in \mathcal{E}')$$

where $E(\psi) := DS(\psi)$ is the Euler-Lagrange functional at $\psi \in \mathcal{E}$.

- No "Lebesgue" measure λ in infinite dimensions.
- Neither $e^{\frac{1}{\hbar}S}\lambda$ is meaningful. (Can be repaired to some extent in Euclidean signature.)
- Neither the Fourier transform of this undefined measure is meaningful.

Rules in informal QFT:

- as if λ existed as *translation invariant* (Lebesgue) measure,
- as if $e^{\frac{i}{\hbar}S}\lambda$ existed as *finite measure*, with *finite moments* and *analytic Fourier transform*.

Textbook "theorem": because of above rules, one has

 $Z: \mathcal{E}' \to \mathbb{C}$ is Fourier transform of $e^{\frac{i}{\hbar}S}\lambda$ " \iff " it satisfies master-Dyson-Schwinger eq

$$\left(\mathbf{E}((-\mathrm{i})\partial_J + \psi_0) + \hbar J\right) Z(J) = 0 \quad (\forall J \in \mathcal{E}')$$

where $E(\psi) := DS(\psi)$ is the Euler-Lagrange functional at $\psi \in \mathcal{E}$.

Does this informal PDE have a meaning? [Yes, on the correlators $G = (G^{(0)}, G^{(1)}, ...)$.]

Rigorous definition of Euler-Lagrange functional

- Let a Lagrange form be given, which is

 $\mathrm{L}:\ V(\mathcal{M})\ \oplus\ T^*(\mathcal{M})\otimes V(\mathcal{M})\ \oplus\ T^*(\mathcal{M})\wedge T^*(\mathcal{M})\otimes V(\mathcal{M})\otimes V^*(\mathcal{M})\ \longrightarrow\ \ \bigwedge^{\dim(\mathcal{M})}T^*(\mathcal{M})$ pointwise bundle homomorphism.

Rigorous definition of Euler-Lagrange functional

- Let a Lagrange form be given, which is

$$L: V(\mathcal{M}) \oplus T^*(\mathcal{M}) \otimes V(\mathcal{M}) \oplus T^*(\mathcal{M}) \wedge T^*(\mathcal{M}) \otimes V(\mathcal{M}) \otimes V^*(\mathcal{M}) \longrightarrow \bigwedge^{\dim(\mathcal{M})} T^*(\mathcal{M})$$
 pointwise bundle homomorphism.

- Lagrangian expression:

$$\Gamma(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}(V(\mathcal{M}))) \longrightarrow \Gamma(\overset{\dim(\mathcal{M})}{\wedge} T^*(\mathcal{M})), \quad (v, \nabla) \longmapsto \operatorname{L}(v, \nabla v, F(\nabla))$$
 where $F(\nabla)$ is the curvature tensor.

Rigorous definition of Euler-Lagrange functional

- Let a Lagrange form be given, which is

$$L: V(\mathcal{M}) \oplus T^*(\mathcal{M}) \otimes V(\mathcal{M}) \oplus T^*(\mathcal{M}) \wedge T^*(\mathcal{M}) \otimes V(\mathcal{M}) \otimes V^*(\mathcal{M}) \longrightarrow \bigwedge^{\dim(\mathcal{M})} T^*(\mathcal{M})$$
 pointwise bundle homomorphism.

- Lagrangian expression:

$$\Gamma(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}(V(\mathcal{M}))) \longrightarrow \Gamma(\overset{\dim(\mathcal{M})}{\wedge} T^*(\mathcal{M})), \quad (v, \nabla) \longmapsto \operatorname{L}(v, \nabla v, F(\nabla))$$
 where $F(\nabla)$ is the curvature tensor.

Action functional:

$$S: \underbrace{\Gamma\big(V(\mathcal{M}) \times_{\!\!\mathcal{M}} \mathrm{CovDeriv}(V(\mathcal{M}))\big)}_{=: \mathcal{E}} \longrightarrow \mathrm{Meas}(\mathcal{M}, \mathbb{R}), \underbrace{(v, \nabla)}_{=: \psi} \longmapsto \Big(\mathcal{K} \mapsto S_{\mathcal{K}}(v, \nabla)\Big)$$

where $S_{\mathcal{K}}(v, \nabla) := \int_{\mathcal{K}} \mathrm{L}(v, \nabla v, F(\nabla))$ for all $\mathcal{K} \subset \mathcal{M}$ compact.

$$DS: \quad \mathcal{E} \times \mathcal{E} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \mid \delta \psi \right) \right)$$

is the usual Euler-Lagrange integral on \mathcal{K} + usual boundary integral on $\partial \mathcal{K}$.

$$DS: \quad \mathcal{E} \times \mathcal{E} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \mid \delta \psi \right) \right)$$

is the usual Euler-Lagrange integral on $\mathcal{K}+$ usual boundary integral on $\partial \mathcal{K}$. Jointly continuous in its variables, linear in second variable.

$$DS: \quad \mathcal{E} \times \mathcal{E} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \mid \delta \psi \right) \right)$$

is the usual Euler-Lagrange integral on $\mathcal{K}+$ usual boundary integral on $\partial \mathcal{K}$. Jointly continuous in its variables, linear in second variable.

Euler-Lagrange functional:

We restrict DS from $\mathcal{E} \times \mathcal{E}$ to $\mathcal{E} \times \mathcal{D}$, to make the EL integral over full \mathcal{M} finite.

$$E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad (\psi, \, \delta \psi_T) \longmapsto (E(\psi) \, \big| \, \delta \psi_T) := (DS_{\mathcal{M}}(\psi) \, \big| \, \delta \psi_T)$$

Bulk Euler-Lagrange integral remains, no boundary term. Meaningful on full \mathcal{M} , real valued.

$$DS: \quad \mathcal{E} \times \mathcal{E} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \mid \delta \psi \right) \right)$$

is the usual Euler-Lagrange integral on $\mathcal{K}+$ usual boundary integral on $\partial \mathcal{K}$. Jointly continuous in its variables, linear in second variable.

Euler-Lagrange functional:

We restrict DS from $\mathcal{E} \times \mathcal{E}$ to $\mathcal{E} \times \mathcal{D}$, to make the EL integral over full \mathcal{M} finite.

$$E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad (\psi, \, \delta \psi_T) \longmapsto (E(\psi) \, \big| \, \delta \psi_T) := (DS_{\mathcal{M}}(\psi) \, \big| \, \delta \psi_T)$$

Bulk Euler-Lagrange integral remains, no boundary term. Meaningful on full \mathcal{M} , real valued. Jointly sequentially continuous, linear in second variable. (Also, $E: \mathcal{E} \to \mathcal{D}'$ continuous.)

$$DS: \quad \mathcal{E} \times \mathcal{E} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \mid \delta \psi \right) \right)$$

is the usual Euler-Lagrange integral on $\mathcal{K}+$ usual boundary integral on $\partial \mathcal{K}$. Jointly continuous in its variables, linear in second variable.

Euler-Lagrange functional:

We restrict DS from $\mathcal{E} \times \mathcal{E}$ to $\mathcal{E} \times \mathcal{D}$, to make the EL integral over full \mathcal{M} finite.

$$E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad (\psi, \, \delta \psi_T) \longmapsto (E(\psi) \, \big| \, \delta \psi_T) := (DS_{\mathcal{M}}(\psi) \, \big| \, \delta \psi_T)$$

Bulk Euler-Lagrange integral remains, no boundary term. Meaningful on full \mathcal{M} , real valued. Jointly sequentially continuous, linear in second variable. (Also, $E: \mathcal{E} \to \mathcal{D}'$ continuous.)

Classical field equation is

$$\psi \in \mathcal{E}$$
? $\forall \delta \psi_T \in \mathcal{D} : (E(\psi) \mid \delta \psi_T) = 0.$

$$DS: \quad \mathcal{E} \times \mathcal{E} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \mid \delta \psi \right) \right)$$

is the usual Euler-Lagrange integral on $\mathcal{K}+$ usual boundary integral on $\partial \mathcal{K}$. Jointly continuous in its variables, linear in second variable.

Euler-Lagrange functional:

We restrict DS from $\mathcal{E} \times \mathcal{E}$ to $\mathcal{E} \times \mathcal{D}$, to make the EL integral over full \mathcal{M} finite.

$$E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad (\psi, \, \delta \psi_T) \longmapsto (E(\psi) \, \big| \, \delta \psi_T) := (DS_{\mathcal{M}}(\psi) \, \big| \, \delta \psi_T)$$

Bulk Euler-Lagrange integral remains, no boundary term. Meaningful on full \mathcal{M} , real valued. Jointly sequentially continuous, linear in second variable. (Also, $E: \mathcal{E} \to \mathcal{D}'$ continuous.)

Classical field equation is

$$\psi \in \mathcal{E}$$
? $\forall \delta \psi_T \in \mathcal{D} : (E(\psi) | \delta \psi_T) = 0.$

Observables are the $O: \mathcal{E} \to \mathbb{R}$ continuous maps.

- Want to rephrase informal MDS operator on Z to n-field correlators $G = \left(G^{(0)}, G^{(1)}, \ldots\right)$. These sit in the tensor algebra $\mathcal{T}(\mathcal{E}) := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}$ of field variations.

More precisely, they sit in a graded-symmetrized subspace, e.g. $\bigvee(\mathcal{E})$ or $\bigwedge(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$. Naturally topologized: with Tychonoff topology, similar to \mathcal{E} , i.e. nuclear Fréchet.

- Want to rephrase informal MDS operator on Z to n-field correlators $G = (G^{(0)}, G^{(1)}, ...)$. These sit in the tensor algebra $\mathcal{T}(\mathcal{E}) := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}$ of field variations.
 - More precisely, they sit in a graded-symmetrized subspace, e.g. $\bigvee(\mathcal{E})$ or $\bigwedge(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$. Naturally topologized: with Tychonoff topology, similar to \mathcal{E} , i.e. nuclear Fréchet.
- Algebraic tensor algebra $\mathcal{T}_a(\mathcal{E}') := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}'$ of sources. Naturally topologized: loc.conv. direct sum topology, similar to \mathcal{E}' , i.e. dual nuclear Fréchet.

- Want to rephrase informal MDS operator on Z to n-field correlators $G = \left(G^{(0)}, G^{(1)}, \ldots\right)$. These sit in the tensor algebra $\mathcal{T}(\mathcal{E}) := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}^n_\pi \mathcal{E}$ of field variations. More precisely, they sit in a graded-symmetrized subspace, e.g. $\bigvee(\mathcal{E})$ or $\bigwedge(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$.

Naturally topologized: with Tychonoff topology, similar to \mathcal{E} , i.e. nuclear Fréchet.

- Algebraic tensor algebra $\mathcal{T}_a(\mathcal{E}') := \underset{n \in \mathbb{N}_0}{\oplus} \hat{\otimes}_{\pi}^n \mathcal{E}'$ of sources. Naturally topologized: loc.conv. direct sum topology, similar to \mathcal{E}' , i.e. dual nuclear Fréchet.
- Schwartz kernel thm gives some simplification: $\hat{\otimes}_{\pi}^{n} \mathcal{E} \equiv \mathcal{E}_{n}$ and $\hat{\otimes}_{\pi}^{n} \mathcal{E}' \equiv \mathcal{E}'_{n}$ (*n*-variate).

- Want to rephrase informal MDS operator on Z to n-field correlators $G = \left(G^{(0)}, G^{(1)}, \ldots\right)$. These sit in the tensor algebra $\mathcal{T}(\mathcal{E}) := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}^n_{\pi} \mathcal{E}$ of field variations. More precisely, they sit in a graded-symmetrized subspace, e.g. $\bigvee(\mathcal{E})$ or $\bigwedge(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$. Naturally topologized: with Tychonoff topology, similar to \mathcal{E} , i.e. nuclear Fréchet.
- Algebraic tensor algebra $\mathcal{T}_a(\mathcal{E}') := \underset{n \in \mathbb{N}_0}{\oplus} \hat{\otimes}_{\pi}^n \mathcal{E}'$ of sources. Naturally topologized: loc.conv. direct sum topology, similar to \mathcal{E}' , i.e. dual nuclear Fréchet.
- Schwartz kernel thm gives some simplification: $\hat{\otimes}_{\pi}^{n} \mathcal{E} \equiv \mathcal{E}_{n}$ and $\hat{\otimes}_{\pi}^{n} \mathcal{E}' \equiv \mathcal{E}'_{n}$ (*n*-variate).
- One has $(\mathcal{T}(\mathcal{E}))' \equiv \mathcal{T}_a(\mathcal{E}')$ and $(\mathcal{T}(\mathcal{E}))'' \equiv \mathcal{T}(\mathcal{E})$ etc, "nice" properties. Moreover, tensor algebra of field variations is topological unital bialgebra.

- Want to rephrase informal MDS operator on Z to n-field correlators $G = \left(G^{(0)}, G^{(1)}, \ldots\right)$. These sit in the tensor algebra $\mathcal{T}(\mathcal{E}) := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}$ of field variations. More precisely, they sit in a graded-symmetrized subspace, e.g. $\bigvee(\mathcal{E})$ or $\bigwedge(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$. Naturally topologized: with Tychonoff topology, similar to \mathcal{E} , i.e. nuclear Fréchet.
- Algebraic tensor algebra $\mathcal{T}_a(\mathcal{E}') := \underset{n \in \mathbb{N}_0}{\oplus} \hat{\otimes}_{\pi}^n \mathcal{E}'$ of sources. Naturally topologized: loc.conv. direct sum topology, similar to \mathcal{E}' , i.e. dual nuclear Fréchet.
- Schwartz kernel thm gives some simplification: $\hat{\otimes}_{\pi}^{n} \mathcal{E} \equiv \mathcal{E}_{n}$ and $\hat{\otimes}_{\pi}^{n} \mathcal{E}' \equiv \mathcal{E}'_{n}$ (*n*-variate).
- One has $(\mathcal{T}(\mathcal{E}))' \equiv \mathcal{T}_a(\mathcal{E}')$ and $(\mathcal{T}(\mathcal{E}))'' \equiv \mathcal{T}(\mathcal{E})$ etc, "nice" properties. Moreover, tensor algebra of field variations is topological unital bialgebra. Unity $\mathbb{1} := (1,0,0,0,\ldots)$. Left-multiplication L_x by a fix element x meaningful and continuous linear. Left-insertion ℓ_p (tracing out) by $p \in (\mathcal{T}(\mathcal{E}))' \equiv \mathcal{T}_a(\mathcal{E}')$ also meaningful, continuous linear. Usual graded-commutation: $(\ell_p L_{\delta\psi} \pm L_{\delta\psi} \ell_p) G = (p|\delta\psi) G \quad (\forall p \in \mathcal{E}', \ \delta\psi \in \mathcal{E}, \ G)$.

Take a classical observable $O: \mathcal{E} \to \mathbb{R}, \ \psi \mapsto O(\psi)$, let $O_{\psi_0} := O \circ (I_{\mathcal{E}} + \psi_0)$.

Take a classical observable $O: \mathcal{E} \to \mathbb{R}, \ \psi \mapsto O(\psi)$, let $O_{\psi_0} := O \circ (I_{\mathcal{E}} + \psi_0)$.

That is, $O_{\psi_0}(\psi - \psi_0) \stackrel{!}{=} O(\psi) \quad (\forall \psi \in \mathcal{E})$, with some fixed reference field $\psi_0 \in \mathcal{E}$.

Take a classical observable $O: \mathcal{E} \to \mathbb{R}, \ \psi \mapsto O(\psi)$, let $O_{\psi_0} := O \circ (I_{\mathcal{E}} + \psi_0)$.

That is, $O_{\psi_0}(\psi - \psi_0) \stackrel{!}{=} O(\psi) \quad (\forall \psi \in \mathcal{E})$, with some fixed reference field $\psi_0 \in \mathcal{E}$.

We say that O is multipolynomial iff for some $\psi_0 \in \mathcal{E}$ there exists $O_{\psi_0} \in \mathcal{T}_a(\mathcal{E}')$, such that

$$\forall \psi \in \mathcal{E} : \underbrace{O_{\psi_0}(\psi - \psi_0)}_{= O(\psi)} = \left(\mathbf{O}_{\psi_0} \mid \left(1, \overset{1}{\otimes} (\psi - \psi_0), \overset{2}{\otimes} (\psi - \psi_0), \ldots \right) \right).$$

Similarly $E: \mathcal{E} \to \mathcal{D}', \, \psi \mapsto E(\psi)$, let $E_{\psi_0} := E \circ (I_{\mathcal{E}} + \psi_0)$ the same re-expressed on \mathcal{E} .

Similarly $E: \mathcal{E} \to \mathcal{D}', \, \psi \mapsto E(\psi)$, let $E_{\psi_0} := E \circ (I_{\mathcal{E}} + \psi_0)$ the same re-expressed on \mathcal{E} .

That is, $E_{\psi_0}(\psi - \psi_0) \stackrel{!}{=} E(\psi) \quad (\forall \psi \in \mathcal{E})$, with some fixed reference field $\psi_0 \in \mathcal{E}$.

Similarly $E: \mathcal{E} \to \mathcal{D}', \ \psi \mapsto E(\psi)$, let $E_{\psi_0} := E \circ (I_{\mathcal{E}} + \psi_0)$ the same re-expressed on \mathcal{E} .

That is, $E_{\psi_0}(\psi - \psi_0) \stackrel{!}{=} E(\psi) \quad (\forall \psi \in \mathcal{E})$, with some fixed reference field $\psi_0 \in \mathcal{E}$.

We say that E is multipolynomial iff $\exists \mathbf{E}_{\psi_0} \in \mathcal{T}_a(\mathcal{E}') \hat{\otimes}_{\pi} \mathcal{D}'$, such that

$$\forall \, \psi \in \mathcal{E}, \, \delta \psi_T \in \mathcal{D}: \underbrace{\left(E_{\psi_0}(\psi - \psi_0) \, \middle| \, \delta \psi_T\right)}_{= \left(E(\psi) \, \middle| \, \delta \psi_T\right)} = \left(\mathbf{E}_{\psi_0} \, \middle| \, \left(1, \, \mathop{\otimes}^1(\psi - \psi_0), \, \mathop{\otimes}^2(\psi - \psi_0), \, \ldots\right) \otimes \delta \psi_T\right).$$

Similarly $E: \mathcal{E} \to \mathcal{D}', \ \psi \mapsto E(\psi)$, let $E_{\psi_0} := E \circ (I_{\mathcal{E}} + \psi_0)$ the same re-expressed on \mathcal{E} .

That is, $E_{\psi_0}(\psi - \psi_0) \stackrel{!}{=} E(\psi) \quad (\forall \psi \in \mathcal{E})$, with some fixed reference field $\psi_0 \in \mathcal{E}$.

We say that E is multipolynomial iff $\exists \mathbf{E}_{\psi_0} \in \mathcal{T}_a(\mathcal{E}') \hat{\otimes}_{\pi} \mathcal{D}'$, such that

$$\forall \, \psi \in \mathcal{E}, \, \delta \psi_T \in \mathcal{D}: \underbrace{\left(E_{\psi_0}(\psi - \psi_0) \, \middle| \, \delta \psi_T\right)}_{= \left(E(\psi) \, \middle| \, \delta \psi_T\right)} = \left(\mathbf{E}_{\psi_0} \, \middle| \, \left(1, \, \mathop{\otimes}^1(\psi - \psi_0), \, \mathop{\otimes}^2(\psi - \psi_0), \, \ldots\right) \otimes \delta \psi_T\right).$$

For fixed $\delta\psi_T\in\mathcal{D}$ one has $(\mathbf{E}_{\psi_0}\,|\,\delta\!\psi_T)\in\mathcal{T}_a(\mathcal{E}')$, i.e. one can left-insert with it: $l_{(\mathbf{E}_{\psi_0}\,|\,\delta\!\psi_T)}$ meaningfully acts on $\mathcal{T}(\mathcal{E})$.

The master Dyson-Schwinger (MDS) equation is:

we search for (ψ_0, G_{ψ_0}) such that:

$$G_{\psi_0}^{(0)} = 1$$

$$=: b G_{\psi_0}$$

$$\forall \, \delta\!\psi_T \in \mathcal{D} : \underbrace{\left(\, L_{(\mathbf{E}_{\psi_0} \, | \, \delta\!\psi_T)} \, - \, \mathrm{i} \, \hbar \, L_{\delta\!\psi_T} \, \right)}_{=: \, \mathbf{M}_{\psi_0, \delta\!\psi_T}} G_{\psi_0} \quad = \quad 0.$$

The master Dyson-Schwinger (MDS) equation is:

we search for (ψ_0, G_{ψ_0}) such that:

$$G_{\psi_0}^{(0)} = 1$$

$$=: b G_{\psi_0}$$

$$\forall \, \delta \psi_T \in \mathcal{D} : \underbrace{\left(\, L_{(\mathbf{E}_{\psi_0} \mid \delta \psi_T)} \, - \, \mathrm{i} \, \hbar \, L_{\delta \psi_T} \, \right)}_{=: \, \mathbf{M}_{\psi_0, \delta \psi_T}} G_{\psi_0} \quad = \quad 0.$$

This substitutes Feynman functional integral formulation, signature independently. Also, no fixed background causal structure etc needed.

The master Dyson-Schwinger (MDS) equation is:

we search for
$$(\psi_0, G_{\psi_0})$$
 such that:

$$G_{\psi_0}^{(0)} = 1$$

$$=: b G_{\psi_0}$$

$$\forall \, \delta \psi_T \in \mathcal{D} : \underbrace{\left(\, L_{(\mathbf{E}_{\psi_0} \mid \delta \psi_T)} \, - \, \mathrm{i} \, \hbar \, L_{\delta \psi_T} \, \right)}_{=: \, \mathbf{M}_{\psi_0, \delta \psi_T}} G_{\psi_0} \quad = \quad 0.$$

This substitutes Feynman functional integral formulation, signature independently. Also, no fixed background causal structure etc needed.

[Feynman type quantum vacuum expectation value of O is then $(\mathbf{O}_{\psi_0} \mid G_{\psi_0})$.]

Example: ϕ^4 model.

Example: ϕ^4 model.

Euler-Lagrange functional is

$$E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad (\psi, \, \delta \psi_T) \longmapsto \int_{y \in \mathcal{M}} \delta \psi_T(y) \, \Box_y \psi(y) \, \mathrm{v}(y) \, + \int_{y \in \mathcal{M}} \delta \psi_T(y) \, \psi^3(y) \, \mathrm{v}(y).$$

Example: ϕ^4 model.

Euler-Lagrange functional is

$$E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad (\psi, \, \delta \psi_T) \longmapsto \int_{y \in \mathcal{M}} \delta \psi_T(y) \, \Box_y \psi(y) \, \mathbf{v}(y) \, + \int_{y \in \mathcal{M}} \delta \psi_T(y) \, \psi^3(y) \, \mathbf{v}(y).$$

MDS operator at $\psi_0 = 0$ reads

$$\left(\mathbf{M}_{\psi_0,\delta\psi_T} G\right)^{(n)}(x_1,...,x_n) =$$

$$\int_{y \in \mathcal{M}} \delta \psi_T(y) \, \Box_y G^{(n+1)}(y, x_1, ..., x_n) \, \mathbf{v}(y) \, + \int_{y \in \mathcal{M}} \delta \psi_T(y) \, G^{(n+3)}(y, y, y, x_1, ..., x_n) \, \mathbf{v}(y)$$

$$-i\hbar \underbrace{n \frac{1}{n!} \sum_{\pi \in \Pi_n} \delta \psi_T(x_{\pi(1)}) G^{(n-1)}(x_{\pi(2)}, ..., x_{\pi(n)})}_{= (L_{\delta \psi_T} G)^{(n)}(x_1, ..., x_n)}$$

Pretty much well-defined, and clear recipe, if field correlators were functions.

Theorem: no solutions with high differentiability (e.g. as smooth functions).

Theorem: for free Minkowski KG case, distributional solution only,

namely
$$G_{\psi_0} = \exp(K_{\psi_0})$$
, where

$$\begin{array}{lll} K_{\psi_0}^{(0)} & = & 0, \\ K_{\psi_0}^{(1)} & = & 0, \\ K_{\psi_0}^{(2)} & = & \mathrm{i}\,\hbar\,\,\mathrm{K}_{\psi_0}^{(2)} & \longleftarrow \text{(symmetric propagator)} \\ K_{\psi_0}^{(n)} & = & 0 & (n \geq 2) \end{array}$$

So we expect distributional solutions only, at best.

Theorem: for free Minkowski KG case, distributional solution only,

namely
$$G_{\psi_0} = \exp(K_{\psi_0})$$
, where

$$\begin{array}{lll} K_{\psi_0}^{(0)} & = & 0, \\ K_{\psi_0}^{(1)} & = & 0, \\ K_{\psi_0}^{(2)} & = & \mathrm{i}\,\hbar\,\,\mathrm{K}_{\psi_0}^{(2)} & \longleftarrow \text{(symmetric propagator)} \\ K_{\psi_0}^{(n)} & = & 0 & (n \geq 2) \end{array}$$

So we expect distributional solutions only, at best.

How can one extend to distributions interaction term like $G^{(n+3)}(y,y,y,x_1,...,x_n)$?

Theorem: for free Minkowski KG case, distributional solution only,

namely
$$G_{\psi_0} = \exp(K_{\psi_0})$$
, where

$$\begin{array}{lll} K_{\psi_0}^{(0)} & = & 0, \\ K_{\psi_0}^{(1)} & = & 0, \\ K_{\psi_0}^{(2)} & = & \mathrm{i}\,\hbar\,\,\mathrm{K}_{\psi_0}^{(2)} & \longleftarrow \text{(symmetric propagator)} \\ K_{\psi_0}^{(n)} & = & 0 & (n \geq 2) \end{array}$$

So we expect distributional solutions only, at best.

How can one extend to distributions interaction term like $G^{(n+3)}(y,y,y,x_1,...,x_n)$?

With sufficiency condition of Hörmander? (Theorem: not workable.)

Theorem: for free Minkowski KG case, distributional solution only,

namely
$$G_{\psi_0} = \exp(K_{\psi_0})$$
, where

$$\begin{array}{lll} K_{\psi_0}^{(0)} & = & 0, \\ K_{\psi_0}^{(1)} & = & 0, \\ K_{\psi_0}^{(2)} & = & \mathrm{i}\,\hbar\,\,\mathrm{K}_{\psi_0}^{(2)} & \longleftarrow \text{(symmetric propagator)} \\ K_{\psi_0}^{(n)} & = & 0 & (n \geq 2) \end{array}$$

So we expect distributional solutions only, at best.

How can one extend to distributions interaction term like $G^{(n+3)}(y,y,y,x_1,...,x_n)$?

With sufficiency condition of Hörmander? (Theorem: not workable.)

Via approximation with functions, i.e. sequential closure? (Theorem: not workable.)

Theorem: for free Minkowski KG case, distributional solution only,

namely
$$G_{\psi_0} = \exp(K_{\psi_0})$$
, where

$$\begin{array}{lll} K_{\psi_0}^{(0)} & = & 0, \\ K_{\psi_0}^{(1)} & = & 0, \\ K_{\psi_0}^{(2)} & = & \mathrm{i}\,\hbar\,\,\mathrm{K}_{\psi_0}^{(2)} & \longleftarrow \text{(symmetric propagator)} \\ K_{\psi_0}^{(n)} & = & 0 & (n \geq 2) \end{array}$$

So we expect distributional solutions only, at best.

How can one extend to distributions interaction term like $G^{(n+3)}(y,y,y,x_1,...,x_n)$?

With sufficiency condition of Hörmander? (Theorem: not workable.)

Via approximation with functions, i.e. sequential closure? (Theorem: not workable.)

Workaround in QFT: Wilsonian regularization using coarse-graining (UV damping).

- When \mathcal{E} (resp \mathcal{D}) are smooth sections of some vector bundle, denote by \mathcal{E}^{\times} (resp \mathcal{D}^{\times}) the smooth sections of its densitized dual vector bundle. Then, distributional sections are \mathcal{D}^{\times} ' (resp \mathcal{E}^{\times} ').

- When \mathcal{E} (resp \mathcal{D}) are smooth sections of some vector bundle, denote by \mathcal{E}^{\times} (resp \mathcal{D}^{\times}) the smooth sections of its densitized dual vector bundle. Then, distributional sections are \mathcal{D}^{\times} ' (resp \mathcal{E}^{\times} ').
- A continuous linear map $C: \mathcal{E}^{\times}{}' \to \mathcal{E}$ is called smoothing operator. Schwartz kernel theorem: $C \longleftrightarrow$ its Schwartz kernel κ which is section over $\mathcal{M} \times \mathcal{M}$.

- When \mathcal{E} (resp \mathcal{D}) are smooth sections of some vector bundle, denote by \mathcal{E}^{\times} (resp \mathcal{D}^{\times}) the smooth sections of its densitized dual vector bundle. Then, distributional sections are \mathcal{D}^{\times} ' (resp \mathcal{E}^{\times} ').
- A continuous linear map $C: \mathcal{E}^{\times}{}' \to \mathcal{E}$ is called smoothing operator. Schwartz kernel theorem: $C \longleftrightarrow$ its Schwartz kernel κ which is section over $\mathcal{M} \times \mathcal{M}$.
- C_{κ} is properly supported iff $\forall \mathcal{K} \subset \mathcal{M}$ compact: $\kappa|_{\mathcal{M} \times \mathcal{K}}$ and $\kappa|_{\mathcal{K} \times \mathcal{M}}$ has compact supp. It extends to $\mathcal{E}^{\times}{}'$, \mathcal{E} , \mathcal{D} , $\mathcal{D}^{\times}{}'$ and preserves compact support (the transpose similarly).

- When \mathcal{E} (resp \mathcal{D}) are smooth sections of some vector bundle, denote by \mathcal{E}^{\times} (resp \mathcal{D}^{\times}) the smooth sections of its densitized dual vector bundle. Then, distributional sections are \mathcal{D}^{\times} ' (resp \mathcal{E}^{\times} ').
- A continuous linear map $C: \mathcal{E}^{\times}{}' \to \mathcal{E}$ is called smoothing operator. Schwartz kernel theorem: $C \longleftrightarrow$ its Schwartz kernel κ which is section over $\mathcal{M} \times \mathcal{M}$.
- C_{κ} is properly supported iff $\forall \mathcal{K} \subset \mathcal{M}$ compact: $\kappa|_{\mathcal{M} \times \mathcal{K}}$ and $\kappa|_{\mathcal{K} \times \mathcal{M}}$ has compact supp. It extends to $\mathcal{E}^{\times \prime}$, \mathcal{E} , \mathcal{D} , $\mathcal{D}^{\times \prime}$ and preserves compact support (the transpose similarly).
- A properly supported smoothing operator is coarse-graining iff injective as E^{×'} → E and its transpose similarly.
 E.g. ordinary convolution by a nonzero test function over affine (Minkowski) spacetime.

- When \mathcal{E} (resp \mathcal{D}) are smooth sections of some vector bundle, denote by \mathcal{E}^{\times} (resp \mathcal{D}^{\times}) the smooth sections of its densitized dual vector bundle. Then, distributional sections are \mathcal{D}^{\times} ' (resp \mathcal{E}^{\times} ').
- A continuous linear map $C: \mathcal{E}^{\times}{}' \to \mathcal{E}$ is called smoothing operator. Schwartz kernel theorem: $C \longleftrightarrow$ its Schwartz kernel κ which is section over $\mathcal{M} \times \mathcal{M}$.
- C_{κ} is properly supported iff $\forall \mathcal{K} \subset \mathcal{M}$ compact: $\kappa|_{\mathcal{M} \times \mathcal{K}}$ and $\kappa|_{\mathcal{K} \times \mathcal{M}}$ has compact supp. It extends to $\mathcal{E}^{\times}{}'$, \mathcal{E} , \mathcal{D} , $\mathcal{D}^{\times}{}'$ and preserves compact support (the transpose similarly).
- A properly supported smoothing operator is coarse-graining iff injective as E[×]′ → E and its transpose similarly.
 E.g. ordinary convolution by a nonzero test function over affine (Minkowski) spacetime.

Coarse-graining ops are natural generalization of convolution by test functions to manifolds.

Originally: Feynman integral " \iff " MDS equation.

Originally: Feynman integral "

" MDS equation.

Wilsonian regularized Feynman integral: integrate only on the image space $C_{\kappa}[\mathcal{D}^{\times}{}'] \subset \mathcal{E}$ of some coarse-graining operator C_{κ} .

Originally: Feynman integral "

" MDS equation.

Wilsonian regularized Feynman integral: integrate only on the image space $C_{\kappa}[\mathcal{D}^{\times}{}'] \subset \mathcal{E}$ of some coarse-graining operator C_{κ} .

Wilsonian regularized Feynman integral "

" Wilsonian regularized MDS equation:

we search for
$$(\psi_0,\gamma(\kappa),\mathcal{G}_{\psi_0,\kappa})$$
 such that:
$$\underbrace{\mathcal{G}^{(0)}_{\psi_0,\kappa}}_{=:\,b\,\mathcal{G}_{\psi_0,\kappa}} = 1,$$

$$\forall \, \delta \psi_T \in \mathcal{D} : \underbrace{\left(\, L_{\gamma(\kappa) \, (\mathbf{E}_{\psi_0} \, | \, \delta \psi_T)} \, - \, \mathrm{i} \, \hbar \, L_{C_\kappa \, \delta \psi_T} \, \right)}_{=: \, \mathbf{M}_{\psi_0, \kappa, \delta \psi_T}} \mathcal{G}_{\psi_0, \kappa} \quad = \quad 0$$

Originally: Feynman integral "

" MDS equation.

Wilsonian regularized Feynman integral: integrate only on the image space $C_{\kappa}[\mathcal{D}^{\times}] \subset \mathcal{E}$ of some coarse-graining operator C_{κ} .

Wilsonian regularized Feynman integral "

" Wilsonian regularized MDS equation:

we search for
$$(\psi_0,\gamma(\kappa),\mathcal{G}_{\psi_0,\kappa})$$
 such that:
$$\underbrace{\mathcal{G}^{(0)}_{\psi_0,\kappa}}_{=:\,b\,\mathcal{G}_{\psi_0,\kappa}} = 1,$$

$$\forall \, \delta \psi_T \in \mathcal{D} : \underbrace{\left(\, L_{\gamma(\kappa) \, (\mathbf{E}_{\psi_0} \, | \, \delta \psi_T)} \, - \, \mathrm{i} \, \hbar \, L_{C_\kappa} \, \delta \psi_T \, \right)}_{=: \, \mathbf{M}_{\psi_0, \kappa, \delta \psi_T}} \mathcal{G}_{\psi_0, \kappa} \quad = \quad 0.$$

Brings back problem from distributions to smooth functions, but depends on regulator κ .

$$\begin{array}{lcl} \mathcal{K}^{(0)}_{\psi_0,\kappa} & = & 0, \\ \\ \mathcal{K}^{(1)}_{\psi_0,\kappa} & = & 0, \\ \\ \mathcal{K}^{(2)}_{\psi_0,\kappa} & = & \mathrm{i}\,\hbar\,\,\mathrm{K}^{(2)}_{\psi_0,\kappa} & \longleftarrow \text{(smoothed symmetric propagator)} \\ \\ \mathcal{K}^{(n)}_{\psi_0,\kappa} & = & 0 & (n \geq 2) \end{array}$$

$$\begin{array}{lll} \mathcal{K}^{(0)}_{\psi_0,\kappa} & = & 0, \\ \\ \mathcal{K}^{(1)}_{\psi_0,\kappa} & = & 0, \\ \\ \mathcal{K}^{(2)}_{\psi_0,\kappa} & = & \mathrm{i}\,\hbar\,\,\mathrm{K}^{(2)}_{\psi_0,\kappa} & \longleftarrow \text{(smoothed symmetric propagator)} \\ \\ \mathcal{K}^{(n)}_{\psi_0,\kappa} & = & 0 & (n \geq 2) \end{array}$$

No problem to evaluate interaction term like $\mathcal{G}^{(n+3)}(y,y,y,x_1,...,x_n)$ on functions.

$$\begin{array}{lll} \mathcal{K}^{(0)}_{\psi_0,\kappa} & = & 0, \\ \\ \mathcal{K}^{(1)}_{\psi_0,\kappa} & = & 0, \\ \\ \mathcal{K}^{(2)}_{\psi_0,\kappa} & = & \mathrm{i}\,\hbar\,\,\mathrm{K}^{(2)}_{\psi_0,\kappa} & \longleftarrow \text{(smoothed symmetric propagator)} \\ \\ \mathcal{K}^{(n)}_{\psi_0,\kappa} & = & 0 & (n \geq 2) \end{array}$$

No problem to evaluate interaction term like $\mathcal{G}^{(n+3)}(y,y,y,x_1,...,x_n)$ on functions.

[We proved a convergent iterative solution method at fix κ , see the paper or ask.]

$$\begin{array}{lll} \mathcal{K}^{(0)}_{\psi_0,\kappa} & = & 0, \\ \\ \mathcal{K}^{(1)}_{\psi_0,\kappa} & = & 0, \\ \\ \mathcal{K}^{(2)}_{\psi_0,\kappa} & = & \mathrm{i}\,\hbar\,\,\mathrm{K}^{(2)}_{\psi_0,\kappa} & \longleftarrow \text{(smoothed symmetric propagator)} \\ \\ \mathcal{K}^{(n)}_{\psi_0,\kappa} & = & 0 & (n \geq 2) \end{array}$$

No problem to evaluate interaction term like $\mathcal{G}^{(n+3)}(y,y,y,x_1,...,x_n)$ on functions.

[We proved a convergent iterative solution method at fix κ , see the paper or ask.]

But what we do with κ dependence? (Rigorous Wilsonian renormalization?)

Part II:

On Wilsonian RG flows of correlators

Fix a reference field $\psi_0 \in \mathcal{E}$ to bring the problem from \mathcal{E} to \mathcal{E} .

Fix a reference field $\psi_0 \in \mathcal{E}$ to bring the problem from \mathcal{E} to \mathcal{E} .

Fix a coarse-graining C_{κ} defining a UV regularization strength.

Fix a reference field $\psi_0 \in \mathcal{E}$ to bring the problem from \mathcal{E} to \mathcal{E} .

Fix a coarse-graining C_{κ} defining a UV regularization strength.

Assume that one has an action $S_{\psi_0,C_\kappa}:\underbrace{C_\kappa[\mathcal{D}^\times]}_{\subset\mathcal{E}}\to\mathbb{R}$ for a coarse-graining C_κ .

Fix a reference field $\psi_0 \in \mathcal{E}$ to bring the problem from \mathcal{E} to \mathcal{E} .

Fix a coarse-graining C_{κ} defining a UV regularization strength.

Assume that one has an action $S_{\psi_0,C_\kappa}: \underbrace{C_\kappa[\mathcal{D}^{\times}']}_{\subset \mathcal{E}} \to \mathbb{R}$ for a coarse-graining C_κ .

Informally, one assumes a Lebesgue measure $\lambda_{C_{\kappa}}$ on each subspace $C_{\kappa}[\mathcal{D}^{\times}]$ of \mathcal{E} . (In Euclidean signature this inexactness can be remedied by Gaussian measure.)

Fix a reference field $\psi_0 \in \mathcal{E}$ to bring the problem from \mathcal{E} to \mathcal{E} .

Fix a coarse-graining C_{κ} defining a UV regularization strength.

Assume that one has an action $S_{\psi_0,C_\kappa}: \underbrace{C_\kappa[\mathcal{D}^\times]}_{\subset \mathcal{E}} \to \mathbb{R}$ for a coarse-graining C_κ .

Informally, one assumes a Lebesgue measure $\lambda_{C_{\kappa}}$ on each subspace $C_{\kappa}[\mathcal{D}^{\times}]$ of \mathcal{E} . (In Euclidean signature this inexactness can be remedied by Gaussian measure.)

This defines the Wilsonian regularized Feynman measure $\,{
m e}^{\frac{{
m i}}{\hbar}S_{\psi_0,C_\kappa}\,\lambda_{C_\kappa}\,.$

Fix a reference field $\psi_0 \in \mathcal{E}$ to bring the problem from \mathcal{E} to \mathcal{E} .

Fix a coarse-graining C_{κ} defining a UV regularization strength.

Assume that one has an action $S_{\psi_0,C_\kappa}: \underbrace{C_\kappa[\mathcal{D}^{\times}']}_{\subset \mathcal{E}} \to \mathbb{R}$ for a coarse-graining C_κ .

Informally, one assumes a Lebesgue measure $\lambda_{C_{\kappa}}$ on each subspace $C_{\kappa}[\mathcal{D}^{\times}]$ of \mathcal{E} . (In Euclidean signature this inexactness can be remedied by Gaussian measure.)

This defines the Wilsonian regularized Feynman measure $\,{
m e}^{\,rac{{
m i}}{\hbar}\,S_{\psi_0,C_\kappa}\,\lambda_{C_\kappa}\,}$.

A family of actions S_{ψ_0,C_κ} ($C_\kappa\in \text{coarse-grainings}$) is Wilsonian RG flow iff: $\forall \text{ coarse-grainings } C_\kappa, C_\mu, C_\nu \text{ with } C_\nu = C_\mu C_\kappa \text{ one has that } e^{\frac{\mathrm{i}}{\hbar}S_{\psi_0,C_\nu}}\lambda_{C_\nu}$ is the pushforward of $e^{\frac{\mathrm{i}}{\hbar}S_{\psi_0,C_\kappa}}\lambda_{C_\kappa}$ by C_μ . \longleftarrow RGE

Rigorous definition will be this, but expressed on the formal moments (n-field correlators).

Rigorous Wilsonian RG flows

Definition:

A family of smooth correlators \mathcal{G}_{C_κ} $(C_\kappa \in \text{coarse-grainings})$ is Wilsonian RG flow iff \forall coarse-grainings C_κ , C_μ , C_ν with $C_\nu = C_\mu C_\kappa$ one has that $\mathcal{G}_{C_\nu}^{(n)} = \otimes^n C_\mu \, \mathcal{G}_{C_\kappa}^{(n)}$ holds (n=0,1,2,...). \longleftarrow rigorous RGE

Rigorous Wilsonian RG flows

Definition:

A family of smooth correlators $\mathcal{G}_{C_{\kappa}}$ ($C_{\kappa} \in \text{coarse-grainings}$) is Wilsonian RG flow iff \forall coarse-grainings C_{κ} , C_{μ} , C_{ν} with $C_{\nu} = C_{\mu}C_{\kappa}$ one has that $\mathcal{G}_{C_{\nu}}^{(n)} = \otimes^n C_{\mu} \mathcal{G}_{C_{\kappa}}^{(n)}$ holds (n = 0, 1, 2, ...). \longleftarrow rigorous RGE

Space of Wilsonian RG flows is nonempty:

For any distributional correlator G, the family

$$\mathcal{G}_{C_{\kappa}}^{(n)} := \otimes^{n} C_{\kappa} G^{(n)} \tag{*}$$

is a Wilsonian RG flow.

Rigorous Wilsonian RG flows

Definition:

A family of smooth correlators $\mathcal{G}_{C_{\kappa}}$ ($C_{\kappa} \in \text{coarse-grainings}$) is Wilsonian RG flow iff \forall coarse-grainings C_{κ} , C_{μ} , C_{ν} with $C_{\nu} = C_{\mu}C_{\kappa}$ one has that $\mathcal{G}_{C_{\nu}}^{(n)} = \otimes^n C_{\mu} \mathcal{G}_{C_{\kappa}}^{(n)}$ holds (n = 0, 1, 2, ...). \longleftarrow rigorous RGE

Space of Wilsonian RG flows is nonempty:

For any distributional correlator G, the family

$$\mathcal{G}_{C_{\kappa}}^{(n)} := \otimes^{n} C_{\kappa} G^{(n)} \tag{*}$$

is a Wilsonian RG flow.

Space of Wilsonian RG flows naturally topologized by coarse-graining-wise Tychonoff.

Rigorous Wilsonian RG flows

Definition:

A family of smooth correlators $\mathcal{G}_{C_{\kappa}}$ ($C_{\kappa} \in \text{coarse-grainings}$) is Wilsonian RG flow iff \forall coarse-grainings C_{κ} , C_{μ} , C_{ν} with $C_{\nu} = C_{\mu}C_{\kappa}$ one has that $\mathcal{G}_{C_{\nu}}^{(n)} = \otimes^n C_{\mu} \mathcal{G}_{C_{\kappa}}^{(n)}$ holds (n = 0, 1, 2, ...). \longleftarrow rigorous RGE

Space of Wilsonian RG flows is nonempty:

For any distributional correlator G, the family

$$\mathcal{G}_{C_{\kappa}}^{(n)} := \otimes^{n} C_{\kappa} G^{(n)} \tag{*}$$

is a Wilsonian RG flow.

Space of Wilsonian RG flows naturally topologized by coarse-graining-wise Tychonoff.

Theorem[A.L., Z.Tarcsay]:

- 1. On manifolds it is Hausdorff, locally convex, complete, nuclear, semi-Montel, Schwartz.
- 2. On flat spacetime for bosonic fields, all Wilsonian RG flows are of the form of (*).

Sketch of proof for 1.:

- Coarse-grainings have a natural partial ordering of being less UV than an other:
 - $C_{\nu} \leq C_{\kappa}$ iff $C_{\nu} = C_{\kappa}$ or $\exists C_{\mu} : C_{\nu} = C_{\mu}C_{\kappa}$.
- With this, the space of Wilsonian RG flows is seen to be projective limit of copies of $\mathcal{T}(\mathcal{E})$.
- Check known properties of $\mathcal{T}(\mathcal{E})$, some of them are preserved by projective limit.

Sketch of proof for 1.:

- Coarse-grainings have a natural partial ordering of being less UV than an other: $C_{\nu} \leq C_{\kappa}$ iff $C_{\nu} = C_{\kappa}$ or $\exists C_{\mu} : C_{\nu} = C_{\mu}C_{\kappa}$.
- With this, the space of Wilsonian RG flows is seen to be projective limit of copies of $\mathcal{T}(\mathcal{E})$.
- Check known properties of $\mathcal{T}(\mathcal{E})$, some of them are preserved by projective limit.

Sketch of proof for 2.:

- On flat spacetime, convolution ops by test functions $C_f := f \star (\cdot)$ exist and commute.
- Due to RGE, commutativity of convolution ops, and polarization formula for n-forms, for bosonic fields $\mathcal{G}_{C_f}^{(n)}$ is n-order homogeneous polynomial in f.
 - That is, one has corresponding $\mathcal{G}_{f_1,...,f_n}^{(n)}$ symmetric n-linear map in $f_1,...,f_n$.
- Due to RGE, commutativity of convolution ops, and an improved Banach-Steinhaus thm, $\mathcal{G}_{f_1^t,\dots,f_n^t}^{(n)}\Big|_0$ extends to an n-variate distribution, which will do the job.

Sketch of proof for 1.:

- Coarse-grainings have a natural partial ordering of being less UV than an other: $C_{\nu} \leq C_{\kappa}$ iff $C_{\nu} = C_{\kappa}$ or $\exists C_{\mu} : C_{\nu} = C_{\mu}C_{\kappa}$.
- With this, the space of Wilsonian RG flows is seen to be projective limit of copies of $\mathcal{T}(\mathcal{E})$.
- Check known properties of $\mathcal{T}(\mathcal{E})$, some of them are preserved by projective limit.

Sketch of proof for 2.:

- On flat spacetime, convolution ops by test functions $C_f := f \star (\cdot)$ exist and commute.
- Due to RGE, commutativity of convolution ops, and polarization formula for n-forms, for bosonic fields $\mathcal{G}_{C_f}^{(n)}$ is n-order homogeneous polynomial in f.

That is, one has corresponding $\mathcal{G}_{f_1,...,f_n}^{(n)}$ symmetric n-linear map in $f_1,...,f_n$.

- Due to RGE, commutativity of convolution ops, and an improved Banach-Steinhaus thm, $\mathcal{G}_{f_1^t,\dots,f_n^t}^{(n)}\Big|_0$ extends to an n-variate distribution, which will do the job.

An improved Banach-Steinhaus theorem (the key lemma – A.L., Z.Tarcsay): If a sequence of n-variate distributions pointwise converge on $\otimes^n \mathcal{D}$, it does also on full \mathcal{D}_n . Therefore, by ordinary Banach-Steinhaus thm, the limit is an n-variate distribution.

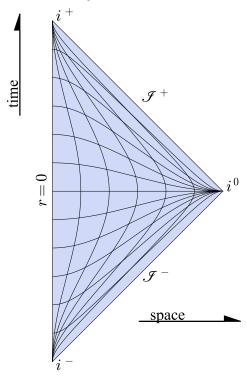
Summary

- Feynman integral has no rigorous definition in Lorentz signature.
- Can be substituted by master Dyson-Schwinger (MDS) equation.
- Function spaces and operators for MDS equation are well defined (in suitable variables).
- Wilsonian regularized version of MDS equation is well defined (in suitable variables).
- Does not need a pre-arranged fixed causal structure.
- Existence condition proved for Wilsonian regularized MDS solutions.
 Provides a convergent iterative approximation algorithm.
- Space of Wilsonian RG flows of correlators:
 - Hausdorff, locally convex, complete, nuclear, semi-Montel, Schwartz.
 - are in bijection with distributions, on flat spacetime for bosonic fields.

Backup slides

Existence condition for regularized MDS solutions

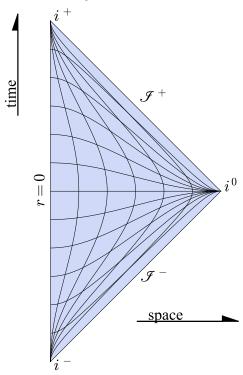
If Euler-Lagrange functional $E: \mathcal{E} \to \mathcal{D}'$ conformally invariant: re-expressable on Penrose conformal compactification.



That is always a compact manifold, with cone condition boundary.

Existence condition for regularized MDS solutions

If Euler-Lagrange functional $E: \mathcal{E} \to \mathcal{D}'$ conformally invariant: re-expressable on Penrose conformal compactification.



That is always a compact manifold, with cone condition boundary.

 $E: \mathcal{E} \to \mathcal{D}'$ reformulable over this base manifold.

$$F_0 \supset F_1 \supset ... \supset F_m \supset ... \supset \mathcal{E}$$

(Intersection of shrinking Hilbert spaces F_m with Hilbert-Schmidt embedding.)

$$F_0 \supset F_1 \supset ... \supset F_m \supset ... \supset \mathcal{E}$$

(Intersection of shrinking Hilbert spaces F_m with Hilbert-Schmidt embedding.)

Theorem [Dubin, Hennings: P.RIMS25 (1989) 971]: without penalty, one can equip $\mathcal{T}(\mathcal{E})$ with a better topology, inheriting CHNF topology.

$$H_0 \supset H_1 \supset ... \supset H_m \supset ... \supset \mathcal{T}_h(\mathcal{E})$$

$$F_0 \supset F_1 \supset ... \supset F_m \supset ... \supset \mathcal{E}$$

(Intersection of shrinking Hilbert spaces F_m with Hilbert-Schmidt embedding.)

Theorem [Dubin, Hennings: P.RIMS25 (1989) 971]: without penalty, one can equip $\mathcal{T}(\mathcal{E})$ with a better topology, inheriting CHNF topology.

$$H_0 \supset H_1 \supset ... \supset H_m \supset ... \supset \mathcal{T}_h(\mathcal{E})$$

Regularized MDS operator is then a Hilbert-Schmidt linear map

$$\mathbf{M}_{\psi_0,\kappa}: H_m \otimes F_m \longrightarrow H_0, \mathcal{G} \otimes \delta\psi_T \longmapsto \mathbf{M}_{\psi_0,\kappa,\delta\psi_T} \mathcal{G}$$

$$F_0 \supset F_1 \supset ... \supset F_m \supset ... \supset \mathcal{E}$$

(Intersection of shrinking Hilbert spaces F_m with Hilbert-Schmidt embedding.)

Theorem [Dubin, Hennings: P.RIMS25 (1989) 971]: without penalty, one can equip $\mathcal{T}(\mathcal{E})$ with a better topology, inheriting CHNF topology.

$$H_0 \supset H_1 \supset ... \supset H_m \supset ... \supset \mathcal{T}_h(\mathcal{E})$$

Regularized MDS operator is then a Hilbert-Schmidt linear map

$$\mathbf{M}_{\psi_0,\kappa}: H_m \otimes F_m \longrightarrow H_0, \mathcal{G} \otimes \delta\psi_T \longmapsto \mathbf{M}_{\psi_0,\kappa,\delta\psi_T} \mathcal{G}$$

Theorem: one can legitimately trace out $\delta\psi_T$ variable to form

$$\hat{\mathbf{M}}_{\psi_0,\kappa}^2: \quad H_m \longrightarrow H_m, \quad \mathcal{G} \longmapsto \sum_{i \in \mathbb{N}_0} \mathbf{M}_{\psi_0,\kappa,\delta\psi_{T}i}^{\dagger} \mathbf{M}_{\psi_0,\kappa,\delta\psi_{T}i} \mathcal{G}$$

By construction: \mathcal{G} is κ -regularized MDS solution $\iff b\,\mathcal{G}=1$ and $\hat{\mathbf{M}}_{\psi_0,\kappa}^2\mathcal{G}=0$.

By construction: \mathcal{G} is κ -regularized MDS solution $\iff b\,\mathcal{G}=1$ and $\hat{\mathbf{M}}_{\psi_0,\kappa}^2\mathcal{G}=0$.

Theorem [A.L.]:

(i) the iteration

$$\mathcal{G}_0 := 1 \text{ and } \mathcal{G}_{l+1} := \mathcal{G}_l - \frac{1}{T} \hat{\mathbf{M}}^2_{\psi_0,\kappa} \mathcal{G}_l \qquad (l = 0, 1, 2, ...)$$

is always convergent if $T > \text{trace norm of } \hat{\mathbf{M}}^2_{\psi_0,\kappa}$.

By construction: \mathcal{G} is κ -regularized MDS solution $\iff b\,\mathcal{G}=1$ and $\hat{\mathbf{M}}_{\psi_0,\kappa}^2\mathcal{G}=0$.

Theorem [A.L.]:

(i) the iteration

$$\mathcal{G}_0 := 1 \text{ and } \mathcal{G}_{l+1} := \mathcal{G}_l - \frac{1}{T} \hat{\mathbf{M}}^2_{\psi_0,\kappa} \mathcal{G}_l \qquad (l = 0, 1, 2, ...)$$

is always convergent if T> trace norm of $\hat{\mathbf{M}}^2_{\psi_0,\kappa}$.

(ii) the κ -regularized MDS solution space is nonempty iff

$$\lim_{l\to\infty} b\,\mathcal{G}_l \neq 0.$$

By construction: \mathcal{G} is κ -regularized MDS solution $\iff b \mathcal{G} = 1$ and $\hat{\mathbf{M}}^2_{\psi_0,\kappa} \mathcal{G} = 0$.

Theorem [A.L.]:

(i) the iteration

$$\mathcal{G}_0 := 1 \text{ and } \mathcal{G}_{l+1} := \mathcal{G}_l - \frac{1}{T} \hat{\mathbf{M}}^2_{\psi_0,\kappa} \mathcal{G}_l \qquad (l = 0, 1, 2, ...)$$

is always convergent if T> trace norm of $\hat{\mathbf{M}}_{\psi_0,\kappa}^2$.

(ii) the κ -regularized MDS solution space is nonempty iff

$$\lim_{l\to\infty} b\,\mathcal{G}_l \neq 0.$$

(iii) and in this case

$$\lim_{l\to\infty}\mathcal{G}_l$$

is an MDS solution, up to normalization factor.

By construction: \mathcal{G} is κ -regularized MDS solution $\iff b \mathcal{G} = 1$ and $\hat{\mathbf{M}}_{\psi_0,\kappa}^2 \mathcal{G} = 0$.

Theorem [A.L.]:

(i) the iteration

$$\mathcal{G}_0 := 1 \text{ and } \mathcal{G}_{l+1} := \mathcal{G}_l - \frac{1}{T} \hat{\mathbf{M}}^2_{\psi_0,\kappa} \mathcal{G}_l \qquad (l = 0, 1, 2, ...)$$

is always convergent if T> trace norm of $\hat{\mathbf{M}}^2_{\psi_0,\kappa}$.

(ii) the κ -regularized MDS solution space is nonempty iff

$$\lim_{l\to\infty} b\,\mathcal{G}_l \neq 0.$$

(iii) and in this case

$$\lim_{l\to\infty}\mathcal{G}_l$$

is an MDS solution, up to normalization factor.

Use for lattice-like numerical method in Lorentz signature?
(Treatment can be adapted to flat spacetime also, because Schwartz functions are CHNF.)

Fréchet derivative in top.vector spaces

Let F and G real top.affine space, Hausdorff.

Subordinate vector spaces: \mathbb{F} and \mathbb{G} .

A map $S: F \to G$ is Fréchet-Hadamard differentiable at $\psi \in F$ iff:

there exists $DS(\psi): \mathbb{F} \to \mathbb{G}$ continuous linear, such that for all sequence $n \mapsto h_n$ in \mathbb{F} , and nonzero sequence $n \mapsto t_n$ in \mathbb{R} which converges to zero,

$$(\mathbb{G}) \lim_{n \to \infty} \left(\frac{S(\psi + t_n h_n) - S(\psi)}{t_n} - DS(\psi) h_n \right) = 0$$

holds.

Fréchet derivative of action functional

Fréchet derivative of $S: \mathcal{E} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R})$ is

$$DS: \mathcal{E} \times \mathcal{E} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \ (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \middle| \delta \psi \right) \right)$$

For
$$\underbrace{(v,\nabla)}_{=:v}\in \mathcal{E}$$
 given,

$$\underbrace{(\delta v, \delta C)}_{=:\delta \psi} \mapsto \left(DS_{\mathcal{K}}(v, \nabla) \, \middle| \, (\delta v, \delta C) \right) =$$

 $(m := \dim(\mathcal{M}))$

$$\int_{\mathcal{K}} \left(D_1 \mathcal{L}(v, \nabla v, P(\nabla)) \, \delta v + D_2^a \mathcal{L}(v, \nabla v, P(\nabla)) \, (\nabla_a \delta v + \delta C_a v) + 2 \, D_3^{[ab]} \mathcal{L}(v, \nabla v, P(\nabla)) \, \tilde{\nabla}_{[a} \delta C_{b]} \right)$$

$$= \int_{\mathcal{K}} \left(D_1 \mathcal{L}(v, \nabla v, P(\nabla))_{[c_1 \dots c_m]} \, \delta v - \left(\tilde{\nabla}_a D_2^a \mathcal{L}(v, \nabla v, P(\nabla))_{[c_1 \dots c_m]} \right) \, \delta v \right) +$$

$$\left(D_2^a L(v, \nabla v, P(\nabla))_{[c_1...c_m]} \delta C_a v - 2 \left(\tilde{\nabla}_a D_3^{[ab]} L(v, \nabla v, P(\nabla))_{[c_1...c_m]}\right) \delta C_b\right)$$

$$+ m \int\limits_{\partial \mathcal{K}} \left(D_2^a \mathcal{L}(v, \nabla v, P(\nabla))_{[ac_1 \dots c_{m-1}]} \delta v + 2 D_3^{[ab]} \mathcal{L}(v, \nabla v, P(\nabla))_{[ac_1 \dots c_{m-1}]} \delta C_b \right)$$

[usual Euler-Lagrange bulk integral + boundary integral]

Distributions on manifolds

 $W(\mathcal{M})$ vector bundle, $W^{\times}(\mathcal{M}) := W^*(\mathcal{M}) \otimes \bigwedge^{\dim(\mathcal{M})} T^*(\mathcal{M})$ its densitized dual. $W^{\times \times}(\mathcal{M}) \equiv W(\mathcal{M})$.

Correspondingly: \mathcal{E}^{\times} and \mathcal{D}^{\times} are densitized duals of \mathcal{E} and \mathcal{D} .

 $\mathcal{E} imes \mathcal{D}^{ imes} o \mathbb{R}, \ (\delta\!\psi, p_T) \mapsto \int\limits_{\mathcal{M}} \delta\!\psi \, p_T \ \ \text{and} \ \mathcal{D} imes \mathcal{E}^{ imes} o \mathbb{R}, \ (\delta\!\psi_T, p) \mapsto \int\limits_{\mathcal{M}} \delta\!\psi_T \ p \ \text{jointly}$ sequentially continuous.

Therefore, continuous dense linear injections $\mathcal{E} \to \mathcal{E}^{\times}{}'$ and $\mathcal{D} \to \mathcal{D}^{\times}{}'$. (hance the name, distributional sections)

Let $A: \mathcal{E} \to \mathcal{E}$ continuous linear.

It has formal transpose iff there exists $A^t: \mathcal{D}^{\times} \to \mathcal{D}^{\times}$ continuous linear, such that $\forall \delta \psi \in \mathcal{E}$ and $p_T \in \mathcal{D}^{\times}$: $\int\limits_{\mathcal{M}} (A \, \delta \psi) \, p_T = \int\limits_{\mathcal{M}} \delta \psi \, (A^t \, p_T).$

Topological transpose of formal transpose $(A^t)': (\mathcal{D}^{\times})' \to (\mathcal{D}^{\times})'$ is the distributional extension of A. Not always exists.

Fundamental solution on manifolds

Let $E: \mathcal{E} \times \mathcal{D} \to \mathbb{R}$ be Euler-Lagrange functional, and $J \in \mathcal{D}'$.

 $\mathtt{K}_{(J)} \in \boldsymbol{\mathcal{E}} \text{ is solution with source } \boldsymbol{J}, \text{ iff } \forall \delta \psi_T \in \mathcal{D}: \ (E(\mathtt{K}_{(J)}) \,|\, \delta \psi_T) = (J | \delta \psi_T).$

Specially: one can restrict to $J \in \mathcal{D}^{\times} \subset \mathcal{E}^{\times} \subset \mathcal{D}'$.

A continuous map $K: \mathcal{D}^{\times} \to \mathcal{E}$ is fundamental solution, iff for all $J \in \mathcal{D}^{\times}$ the field $K(J) \in \mathcal{E}$ is solution with source J.

May not exists, and if does, may not be unique.

If $K_{\psi_0}: \mathcal{D}^{\times} \to \mathcal{E}$ vectorized fundamental solution is linear (e.g. for linear $E_{\psi_0}: \mathcal{E} \to \mathcal{D}'$): $K_{\psi_0} \in \mathcal{L}in(\mathcal{D}^{\times}, \mathcal{E}) \subset (\mathcal{D}^{\times})' \otimes (\mathcal{D}^{\times})'$ is distribution.

Particular solutions to the free MDS equation

Distributional solutions to free MDS equation: $G_{\psi_0} = \exp(K_{\psi_0})$ where

$$K_{\psi_0}^{(0)} = 0,$$

$$K_{\psi_0}^{(1)} = 0,$$

$$K_{\psi_0}^{(2)} = i \hbar K_{\psi_0}^{(2)}$$

$$K_{\psi_0}^{(n)} = 0 \qquad (n \ge 2)$$

Smooth function solutions to free regularized MDS equation: $G_{\psi_0} = \exp(K_{\psi_0,\kappa})$ where

$$K_{\psi_{0},\kappa}^{(0)} = 0,$$

$$K_{\psi_{0},\kappa}^{(1)} = 0,$$

$$K_{\psi_{0},\kappa}^{(2)} = i\hbar (C_{\kappa} \otimes C_{\kappa}) K_{\psi_{0}}^{(2)}$$

$$K_{\psi_{0},\kappa}^{(n)} = 0 \qquad (n \ge 2)$$

[Here $C_{\kappa}(\cdot) := \eta \star (\cdot)$ is convolution by a test function η .]

Renormalization from functional analysis p.o.v.

Let \mathbb{F} and \mathbb{G} real or complex top.vector space, Hausdorff loc.conv complete.

Let $M : \mathbb{F} \to \mathbb{G}$ densely defined linear map (e.g. MDS operator).

Closed: the graph of the map is closed.

Closable: there exists linear extension, such that its graph closed (unique if exists).

Closable ⇔ where extendable with limits, it is unique.

Multivalued set:

$$\operatorname{Mul}(M) := \big\{ y \in \mathbb{G} \, \big| \, \exists \, (x_n)_{n \in \mathbb{N}} \, \text{ in } \operatorname{Dom}(M) \text{ such that } \lim_{n \to \infty} x_n = 0 \text{ and } \lim_{n \to \infty} Mx_n = y \big\}.$$

Mul(M) always closed subspace.

Closable $\Leftrightarrow Mul(M) = \{0\}.$

Maximally non-closable $\Leftrightarrow \operatorname{Mul}(M) = \overline{\operatorname{Ran}(M)}$. Pathological, not even closable part.

Polynomial interaction term of MDS operator maximally non-closable!

MDS operator:

$$\mathbf{M}: \quad \mathcal{D} \otimes \mathcal{T}(\mathcal{E}) \to \mathcal{T}(\mathcal{E}), \quad G \mapsto \mathbf{M} G$$

linear, everywhere defined continuous. So,

$$\mathbf{M}: \quad \mathcal{T}(\mathcal{D}^{\times}) \to \mathcal{D}' \otimes \mathcal{T}(\mathcal{D}^{\times}), \quad G \mapsto \mathbf{M} G$$

linear, densely defined.

Similarly: \mathbf{M}_{κ} regularized MDS operator (κ : a fix regularizator).

Not good equation:

$$G \in \mathcal{T}(\mathcal{D}^{\times}{}')$$
? $G^{(0)} = 1$ and $\exists \mathcal{G}_{\kappa} \to G$ approximator sequence, such that :
$$\lim_{\kappa \to \delta} \mathbf{M} \, \mathcal{G}_{\kappa} = 0.$$

All G would be selected, because Mul() set of interaction term is full space.

Not good equation:

$$G\in \mathcal{T}(\mathcal{D}^{ imes \prime})$$
? $G^{(0)}=1$ and $\exists~\mathcal{G}_{\kappa} \to G$ approximator sequence, such that $:\lim_{\kappa \to \delta} \mathbf{M}_{\kappa}\,\mathcal{G}_{\kappa}=0.$

All G would be selected, because Mul() set of interaction term is full space.

Can be good:

$$G \in \mathcal{T}(\mathcal{D}^{\times}{}')$$
? $G^{(0)} = 1$ and $\exists \mathcal{G}_{\kappa} \to G$ approximator sequence, such that $\forall \kappa : \mathbf{M}_{\kappa} \mathcal{G}_{\kappa} = 0$.

That is, as implicit function of κ , not as operator closure kernel.

Running coupling:

If in \mathbf{M}_{κ} EL terms are combined with κ -dependent weights $\gamma(\kappa)$.

(Not just with real factors.)

E.g.:

$$(\gamma,G)\in\mathcal{T}(\mathcal{D}^{\times}{}')$$
? $G^{(0)}=1$ and $\exists\,\mathcal{G}_{\kappa}\to G$ approximator sequence, such that $\forall\,\kappa:\,\mathbf{M}_{\gamma(\kappa),\kappa}\,\mathcal{G}_{\kappa}=0.$

Feynman integral "←→" MDS equation.

Wilsonian regularized Feynman integral:

integrate not on \mathcal{E} , only on the image space $C_{\kappa}[\mathcal{E}]$ of a smoothing operator $C_{\kappa}: \mathcal{E} \to \mathcal{E}$.

[Smoothing operator: \sim convolution, can be generalized to manifolds. Does UV damping.] Automatically knows RGE relations.

Wilsonian regularized Feynman integral "←→" regularized MDS equation + RGE:

$$\begin{array}{lll} \left(\psi_0,\kappa\mapsto\gamma(\kappa),\kappa\mapsto\mathcal{G}_{\psi_0,\kappa}\right) &=? \text{ such that :} & \underbrace{\mathcal{G}_{\psi_0,\kappa}^{(0)}}_{=:\,b\,\mathcal{G}_{\psi_0,\kappa}} &=& 1,\\ \\ &=:\,b\,\mathcal{G}_{\psi_0,\kappa} & \\ \\ &\forall\kappa:\,\forall\,\delta\!\psi_T\in\mathcal{D}: & \underbrace{\left(\,\,L_{\gamma(\kappa)\,(\mathbf{E}_{\psi_0}\,|\,\delta\!\psi_T)}\,\,-\,\,\mathrm{i}\,\hbar\,L_{C_\kappa}\,\delta\!\psi_T\,\,\right)}_{=:\,\mathbf{M}_{\psi_0,\kappa},\delta\!\psi_T} & \mathcal{G}_{\psi_0,\kappa}^{(n)} &=& 0,\\ \\ &=:\,\mathbf{M}_{\psi_0,\kappa},\delta\!\psi_T & \\ \\ & \forall\mu,\kappa: & \mathcal{G}_{\psi_0,(C_\mu\kappa)}^{(n)} &=& (\otimes^nC_\mu)\,\mathcal{G}_{\psi_0,\kappa}^{(n)}. \end{array}$$

Running coupling is meaningful. Conjecture: RG flow of $\mathcal{G}_{\psi_0,\kappa} \leftrightarrow$ distributional G_{ψ_0} . Conjecture proved for flat spacetime for bosonic fields.)

Some complications on topological vector spaces

Careful with tensor algebra! Schwartz kernel theorems:

$$\hat{\otimes}_{\pi}^{n}\mathcal{E} \qquad \equiv \qquad \mathcal{E}_{n} \quad \equiv \qquad (\hat{\otimes}_{\pi}^{n}\mathcal{E}')' \quad \equiv \qquad \mathcal{L}in(\mathcal{E}', \hat{\otimes}_{\pi}^{n-1}\mathcal{E})$$

$$(\hat{\otimes}_{\pi}^{n}\mathcal{E})' \qquad \equiv \qquad \mathcal{E}'_{n} \quad \equiv \qquad \hat{\otimes}_{\pi}^{n}\mathcal{E}' \qquad \equiv \qquad \mathcal{L}in(\mathcal{E}, \hat{\otimes}_{\pi}^{n-1}\mathcal{E}')$$

$$\hat{\otimes}_{\pi}^{n}\mathcal{D} \qquad \leftarrow \qquad \mathcal{D}_{n} \quad \equiv \qquad (\hat{\otimes}_{\pi}^{n}\mathcal{D}')'$$

$$\text{cont.bij.}$$

$$(\hat{\otimes}_{\pi}^{n}\mathcal{D})' \qquad \rightarrow \qquad \mathcal{D}'_{n} \quad \equiv \qquad \hat{\otimes}_{\pi}^{n}\mathcal{D}' \qquad \equiv \qquad \mathcal{L}in(\mathcal{D}, \hat{\otimes}_{\pi}^{n-1}\mathcal{D}')$$

 $\mathcal{E} \times \mathcal{E} \to F$ separately continuous maps are jointly continuous.

 $\mathcal{E}' \times \mathcal{E}' \to F$ separately continuous bilinear maps are jointly continuous.

For mixed, no guarantee.

For \mathcal{D} or \mathcal{D}' spaces, joint continuity from separate continuity of bilinear forms not automatic. For mixed, even less guarantee.

But as convergence vector spaces, everything is nice with mixed \mathcal{E} , \mathcal{E}' , \mathcal{D} , \mathcal{D}' multilinears (separate sequential continuity \Leftrightarrow joint sequential continuity).