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The Polaron

Model of a chargerd particle interacting with the quantized phonons of a polar crystal.

Polarization proportional to the electric field created by the charged particle.

In the large polaron, the electron is spread over distances much larger than the crystal

spacing. Thus, the polarization field is modelled as a continuous quantum field.
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The Fröhlich Model

Model of a charged particle interacting with the quantized phonons of a polar crystal.

Polarization proportional to the electric field created by the charged particle.

On L2(R3, dx)⊗F (with F the bosonic Fock space over L2(R3))

Hα = −∆x +
√
α

∫
R3

1

|x− y|2
(a∗y + ay) dy +

∫
R3

a∗yay dy

with coupling constant α > 0.

The bosonic creation and annihilation operators satisfy the usual bosonic CCR

[ay , a
∗
x] = δ(y − x) [ay , ax] = 0.

Note: Since y 7→ |y|−2 is not in L2(R2), Hα is not defined on the domain of H0. It can be

defined as a quadric form, however.
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The Energy-Momentum Relation

The Fröhlich Hamiltonian is translation invariant, i.e., it commutes with the total

momentum operator

Ptot = −i∇x +

∫
R3

a∗y(−i∇y)ay dy

Hence there is a fiber-integral decomposition Hα =
∫⊕
R3 Hα(P ) dP with

Hα(P ) ∼=
(
P −

∫
R3

a∗y(−i∇y)ay dy
)2

+
√
α

∫
R3

1

|y|2
(a∗y + ay) dy +

∫
R3

a∗yay dy

acting on F only. The energy-momentum spectrum is defined as (P, σ(Hα(P )) ⊂ R4 with

the infimum at fixed P called the energy-momentum relation

Eα(P ) = inf σ(Hα(P )).

In the absence of interaction, E0(P ) = min{P 2, 1} and σess(H0(P )) = [1,∞).

By the HVZ theorem (Møller 2006): σess(Hα(P )) = [Eα(0) + 1,∞).
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The semiclassical Pekar Functional

The semiclassical approximation amounts to replacing a∗y 7→ φ(y) and ay 7→ φ(y) with

φ ∈ L2(R3). This leads to

E(ψ,φ) =
∫
R3

|∇ψ(x)|2dx+ 2

∫
R6

|ψ(x)|2Reφ(y)

|x− y|2
dxdy +

∫
R3

|φ(y)|2dy.

Minimizing with respect to the classical field φ ∈ L2(R3) gives the Pekar functional

EPek(ψ) = min
φ

E(ψ,φ) =
∫
R3

|∇ψ(x)|2dx−
∫
R6

|ψ(x)|2|ψ(y)|2

|x− y|
dxdy.

Lieb (1977) proved that there exists a minimizer of EPek(ψ) with ∥ψ∥2 = 1 that it unique

up to translations (”self-trapping”). We shall write ψPek and φPek.

Lenzmann (2009) showed that the Hessian at a minizer has only three trivial zero-modes

due to the translational symmetry. (”Gold-stone modes”)
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Asymptotics of the Ground State Energy

Let ePek < 0 denote the Pekar energy min∥ψ∥2=1 EPek(ψ).

Using the probabilistic path integral formulation of the problem (Feynman 1955),

Donsker and Varadhan (1983) proved the validity of the Pekar approximation for the

ground state energy

lim
α→∞

α−2 inf σ(Hα) = ePek.

Lieb and Thomas (1997) used operator techniques to obtain the quantitative bound

α2ePek ≥ inf σ(Hα) ≥ α2ePek −O(α9/5)

for large α.

The upper bound follows from a simple product ansatz ψPek ⊗W (φPek)Ω.
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Quantum fluctuations

What to expect for the quantum corrections? Consider

F(φ) = min
∥ψ∥2=1

E(ψ,φ) = inf σ
(
−∆+ 2Reφ ∗ | · |−2

)
+

∫
R3

|φ(y)|2dy

and expand around a minimizer φPek

F(φPek + εφ) ≈ F(φPek) + ε2 Hess|φPekF(φ) + o(ε2).

The Hessian is given in terms of a quadratic form on L2(R3)

Hess|φPekF(φ) =
∑
i,j

(
Sij

(
φiφj + φiφj

)
+ Tij

(
φiφj + φi φj

))
for some real numbers Sij , Tij and φ(y) =

∑
i φiui(y). With this we define the quadratic

Fock space operator

H =
∑
i,j

(
Sij

(
a∗i aj + aia

∗
j

)
+ Tij

(
aiaj + a∗i a

∗
j

))
.

This motivates the prediction (Bogoliubov 1949, Allcock 1963)

inf σ(Hα) = α2ePek + inf σ(H) + o(1) as α→ ∞.
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Effective Mass

One can use the semiclassical approximation to arrive at the Landau–Pekar prediction

mα = α4mPek with mPek =
2

3

∫
R3

|∇φPek|2dy

for the effective mass defined by Eα(P ) = Eα(0) + P 2/(2mα) + o(P 2) as P → 0.

Putting all together, we can thus expect that the energy-momentum relations satisfies

Eα(P ) = α2ePek + inf σ(H) +
P 2

2α4mPek
+ o(1)

as α→ ∞ for all |P | ≲ α2
√
2mPek.

The restriction |P | ≲ α2
√
2mPek comes from Eα(P ) ≤ Eα(0) + 1 for any P ∈ R3 due to

σess(Hα(P )) = [Eα(0) + 1,∞).
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Main Results

Theorem [M., Myśliwy, Seiringer, Forum Sigma 2023]: As α→ ∞

Eα(P ) ≤ α2ePek + inf σ(H) + min

{
P 2

2α4mPek
, 1

}
+O(α−1/2+ε).

The proof is based on a trial state estimate for Hα(P ).

A corresponding lower bound was proved by Brooks and Seiringer (2022).

Combining both results immediately verifies the Bogoliubov–Allcock prediction

inf σ(Hα) = α2ePek + inf σ(H) + o(1)

and shows that the inverse global curvature of Eα(P ) agrees with the Landau–Pekar mass

lim
P→0

lim
α→∞

1

2

P 2

Eα(α2P )− Eα(0)
= mPek.

However, it does not say anything about the reversed order of the limits.
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Excited States

Does (P, σ(Hα(P ))) contain more discrete eigenvalues than Eα(P )?

The upper bound construction can be generalized to prove the existence of excited

bound states for large α.

Theorem [M., Seiringer 2022]: For |P | ≲ α2, limα→∞ |σdisc(Hα(P ))| = ∞.

The result is in contrast to small α where σdisc(Hα(0)) = {Eα(0)} (Seiringer 2022).
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The confined Polaron Model

For a bounded region Ω ⊂ R3, let Ωα = 1
α
Ω. We now consider the confined polaron model

HΩ,α = −∆Ωα +
√
α

∫
Ωα

v(x, y)(a∗y + ay) dy +

∫
Ωα

a∗yay dy

defined on L2(Ωα)⊗F(L2(Ωα)).

Here, ∆Ωα is the Dirichlet–Laplacian on L2(Ωα) and v(x, y) = (−∆Ωα )
−1/2(x, y).

HΩ,α is not translation-invariant and has only discrete spectrum. Also, the corresponding

semiclassical energy functional has unique minimizers ψPek, φPek.

Frank and Seiringer (CPAM, 2020) proved the Bogoliubov–Allcock prediction

inf σ(HΩ,α) = α2ePek
Ω + inf σ(HΩ) + o(1) as α→ ∞.

for α-independent ePek
Ω and inf σ(HΩ).

Our next result provides an asymptotic expansion in α−1 for all eigenvalues.
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Asymptotic Expansion for Eigenvalues

Theorem [Brooks, M. 2023]: Let E
(n)
α and E

(n)
0 denote the nth eigenvalues of HΩ,α and

HΩ, respectively. There exists a sequence (E
(n)
ℓ )ℓ≥1 such that for every b ≥ 1

E
(n)
α = α2ePek

Ω +

b∑
ℓ=0

1

αℓ
E

(n)
ℓ + O(α−b−1).

The coefficients are defined in terms of a two-fold perturbation expansion.

For the proof, we construct approximate eigenstates that satisfy

∥∥∥∥(HΩ,α − α2ePek
Ω −

1

α2

b∑
ℓ=0

1

αℓ
E

(n)
ℓ

)
Ψ(b)

∥∥∥∥ = O(α−b−1)

and additionally show that no others eigenvalues exist.

If E
(n)
0 is non-degenerate, the remainder is bounded by Cbb!/αb+1, which is reminiscent of

Borel–summability. However, we can not prove Borel–summability due to the lack of a

suitable analytic continuation of E
(n)
α .
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Summary

• We investigate the energy-momentum spectrum for the Fröhlich polaron model in

the strong coupling limit

• On the natural scale P ∼ α2, the energy-momentum relation Eα(P ) is a parabola

determined by the semiclassical Pekar mass α4mPek.

• The number of excited energy bands between Eα(P ) and Eα(P ) + 1 diverges in the

limit α→ ∞.

• For the confined polaron, we derive an asymptotic expansion of each eigenvalue in

inverse powers of α−1.

• Corresponding results can be obtained for the time-dependent problem, deriving the

Landau–Pekar equations from the Schrödinger equation of the Fröhlich Hamiltonian

in the strong-coupling limit [Leopold, M., Rademacher, Schlein, Seiringer, PAA 2021].
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