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The Polaron

Model of a chargerd particle interacting with the quantized phonons of a polar crystal.

Polarization proportional to the electric field created by the charged particle.
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In the large polaron, the electron is spread over distances much larger than the crystal

spacing. Thus, the polarization field is modelled as a continuous quantum field.



The Frohlich Model

Model of a charged particle interacting with the quantized phonons of a polar crystal.

Polarization proportional to the electric field created by the charged particle.

On L?(R3,dz) ® F (with F the bosonic Fock space over L2(R3))

Ha = —Az +Va (a;+ay)dy+/da2aydy
JRs

Jrs |z —y|?
with coupling constant o > 0.

The bosonic creation and annihilation operators satisfy the usual bosonic CCR

lay,az] =6(y — @) lay, az] = 0.

Note: Since y — \y|’2 is not in L2(R2)7 Hea is not defined on the domain of . It can be

defined as a quadric form, however.



The Energy-Momentum Relation

The Frohlich Hamiltonian is translation invariant, i.e., it commutes with the total

momentum operator
Piot = —iVy -‘r/ ay(=iVy)ay dy
R3

Hence there is a fiber-integral decomposition ), = fﬂg Ha(P)dP with
2 1
Ha(P) =2 (P — / ay(=iVy)aydy | + \/a/ T (ay +ay)dy +/ ayay dy
R3 s |y R3

acting on F only. The energy-momentum spectrum is defined as (P, o(fa(P)) C R* with
the infimum at fixed P called the energy-momentum relation

Eo(P) = info(Ha(P)).
In the absence of interaction, Eo(P) = min{P?,1} and cess(Ho(P)) = [1,0).

By the HVZ theorem (Mgller 2006): gess($a(P)) = [Ea(0) 4+ 1, 00).



The semiclassical Pekar Functional

The semiclassical approximation amounts to replacing ay, — $(y) and ay — ¢(y) with
¢ € L%(R3). This leads to

|4 (z) *Rep(y)
|z —y[2

£, 0) = / V() 2d + 2 / ity / lo(v) dy.
JR3 JR6 JR3

Minimizing with respect to the classical field ¢ € L?(R?) gives the Pekar functional

(@)1

dxdy.
[z -yl

EPK(1h) = min € = [ |Vy(z)]dzx —
) = ming(w.p) = [ V0P~ [

Lieb (1977) proved that there exists a minimizer of EP° (1)) with ||4b||2 = 1 that it unique
up to translations (”self-trapping”). We shall write ¢)T¢k and @Fek,

Lenzmann (2009) showed that the Hessian at a minizer has only three trivial zero-modes

due to the translational symmetry. (”Gold-stone modes”)



Asymptotics of the Ground State Ener

Let eP°k < 0 denote the Pekar energy min||y |, =1 EPek(ah).

Using the probabilistic path integral formulation of the problem (Feynman 1955),
Donsker and Varadhan (1983) proved the validity of the Pekar approximation for the

ground state energy

lim a2 info(Ha) = ePek,
a—r 00

Lieb and Thomas (1997) used operator techniques to obtain the quantitative bound
a2ePek > iIlfU'(f)a) > a2€Pek _ O(OLQ/S)

for large a.

The upper bound follows from a simple product ansatz T @ W (pPe<)Q.



Quantum fluctuations

What to expect for the quantum corrections? Consider

Fle) = min £(b9) = info(— A+ 2Reps|172) + [ lo)ldy
2= R3

and expand around a minimizer ¢Pek

F(oF* 4 ep) = F(pFek) + £2 Hess| ,pex F () + o(e?).
The Hessian is given in terms of a quadratic form on L2(R3)

Hess|rac F(p) = (Sij (@ivs + 0i®5) + Tij (wi; + @@'))
¥
for some real numbers S;;, Ti; and p(y) = >, @iui(y). With this we define the quadratic

Fock space operator

H= Z( ij(ajaj + a;aj ) +Tl](a1aj +a1a])>
This motivates the prediction (Bogoliubov 1949, Allcock 1963)

info(Ha) = a?eP +info(H) +0(1) as a — oco.



Effective Mass

One can use the semiclassical approximation to arrive at the Landau—Pekar prediction

2
ma = a*mPe  with mPek = 2 / |chpek\2dy
JRs

for the effective mass defined by Eq(P) = Eq(0) + P2/(2ma) + o(P?) as P — 0.

Putting all together, we can thus expect that the energy-momentum relations satisfies

2

Eo(P) = a?eP°k 4 inf o (H) + +o(1)

2ot mPek
as a — oo for all |P| < a?v2mPek,

The restriction |P| < a?v2mPek comes from Eo(P) < Eo(0) + 1 for any P € R? due to
Oess(Da(P)) = [Ea(0) + 1,00).



Main Results

Theorem [M., Mysliwy, Seiringer, Forum Sigma 2023]: As a — oo

2

P
SoiFeE 1} + O(a71/2+€).

Eo(P) < a?eP* 4 inf o (H) + min {
The proof is based on a trial state estimate for $q (P).
A corresponding lower bound was proved by Brooks and Seiringer (2022).
Combining both results immediately verifies the Bogoliubov—Allcock prediction
inf o(Ha) = a?eF°* + inf o (H) + o(1)
and shows that the inverse global curvature of Fq (P) agrees with the Landau—Pekar mass
p? Pek

1
P e o
Po00m00 2 Eq(a2P) — Eq(0)

However, it does not say anything about the reversed order of the limits.



Excited States

Does (P,0($a(P))) contain more discrete eigenvalues than Eq (P)?

The upper bound construction can be generalized to prove the existence of excited

bound states for large a.

Theorem [M., Seiringer 2022]: For |P| < a2, lima—co |0disc(Da (P))| = co.

olhopgommgooos
[N TP

The result is in contrast to small o where ogisc(Ha(0)) = {Ea(0)} (Seiringer 2022).



The confined Polaron Model

For a bounded region Q C R3, let Qo = éQ We now consider the confined polaron model

Fe = Do, +va [ v y)al +ay)dy+ / Wy dy
S

2 o

defined on L?(Q4) ® F(L?(QW)).
Here, Aq,, is the Dirichlet-Laplacian on L?(Qq) and v(z,y) = (—Aq, )~ /?(z,y).

@, is not translation-invariant and has only discrete spectrum. Also, the corresponding

semiclassical energy functional has unique minimizers Tk, pPek,

Frank and Seiringer (CPAM, 2020) proved the Bogoliubov—Allcock prediction
info(H0,q) = a?eb™ +info(Hg) +o(1) as a — oco.
for a-independent e5°* and inf o(Hg).

Our next result provides an asymptotic expansion in a1 for all eigenvalues.
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Asymptotic Expansion for Eigenvalues

Theorem [Brooks, M. 2023]: Let cf’(im and Eé”) denote the nth eigenvalues of ) o and
Hg,, respectively. There exists a sequence (Eé”))gzl such that for every b > 1

b
1
&5 = o2k + 3 S EM + 0(abY).
a~eq + pard (XZ v + (Q’ )

The coefficients are defined in terms of a two-fold perturbation expansion.

For the proof, we construct approximate eigenstates that satisfy

H (569 W —a? Pek = Z E(n))\p(b)

Z(]

O(a_b_l)

and additionally show that no others eigenvalues exist.

If E'én) is non-degenerate, the remainder is bounded by C?b!/ab*!, which is reminiscent of
Borel-summability. However, we can not prove Borel-summability due to the lack of a

suitable analytic continuation of &Em.

11



Summary

e We investigate the energy-momentum spectrum for the Frohlich polaron model in

the strong coupling limit

e On the natural scale P ~ o2, the energy-momentum relation E,(P) is a parabola

determined by the semiclassical Pekar mass a*mPek,

e The number of excited energy bands between Eq(P) and Eo(P) + 1 diverges in the

limit o — oo.

e For the confined polaron, we derive an asymptotic expansion of each eigenvalue in

inverse powers of a~ 1.

e Corresponding results can be obtained for the time-dependent problem, deriving the
Landau—Pekar equations from the Schrédinger equation of the Frohlich Hamiltonian

in the strong-coupling limit [Leopold, M., Rademacher, Schlein, Seiringer, PAA 2021].
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