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Motivation

Is noncommutative QFT physically realistic?

Does noncommutative Geometry award us with a theory of quantum
gravity?



Intro, What

▶ Calculate relative Entropy for a QFT in NC-Minkowski space



Intro, Why

▶ Physical (Dis-)Proof for NC Spacetime

▶ Supply a proof as to the connection to quantum gravity



Intro NCQFT - Conceptual Part

QFT in a NC Minkwoski-spacetime is represented on V ⊗ Fs(H ), where
V is the representation space of x̂

[x̂µ, x̂ν ] = iθµν ,

where µ, ν = 0, . . . , 3 and θ is a skew-symmetric (w.r.t. the Minkowski
metric) matrix

θµν =


0 Θ 0 0
Θ 0 0 0
0 0 0 Θ′

0 0 −Θ′ 0

 ,

with Θ,Θ′ ∈ R and Θ ≥ 0.



Intro NCQFT II

GL07 proved that ϕ⊗ can be written on the Fock space Fs(H ) by
existence of a unitary map U from U : V ⊗ Fs(H ) → Fs(H )

ϕθ(f ) : =

∫
d4x f (x)ϕθ(x)

=

∫
d3p
ωp

(
f −(p) e−ipθPa(p) + f +(p) e ipθPa∗(p)

)
,

with ωp = +
√
p⃗2 +m2 and p = (ωp, p⃗) and f ∈ S (R4) and P is the

momentum operator.

Furthermore, the authors proved that ϕθ (and ϕ−θ) is a wedge local field.



Twisted CCR

The twisted CCR algebra for arbitrary on-shell momenta p, p′ ∈ H +
m and

matrices θ, θ′ is

aθ(p)aθ′(p′) = e ip(θ+θ′)p′
aθ′(p′)aθ(p)

a∗θ(p)a
∗
θ′(p′) = e ip(θ+θ′)p′

a∗θ′(p′)a∗θ(p)

aθ(p)a
∗
θ′(p′) = e−ip(θ+θ′)p′

a∗θ′(p′)aθ(p) + ωp δ
3(p − p′)e−ip(θ−θ′)P



Equivalent to Deformation with Warped Convolutions

Definition of deformation, BLS10

The warped convolution Aθ of A ∈ C∞ is given on a set of vectors
Φ ∈ D ⊂ H by

AθΦ := (2π)−d lim
ϵ→0

∫∫
dy dk χ(ϵx , ϵy) e−iykU(θy)AU(−θy)U(k)Φ.

where U(k) := e ik
µPµ . It is connected to the Rieffel product as follows,

AθBθ = (A×θ B)θ

where ×θ is known as the Rieffel product on C∞.



Crash Course Tomita-Takesaki I

Given (M,H , |Ω⟩) the Tomita-Takesaki operator S applies to elements
of the algebra as follows

S A |Ω⟩ = A∗|Ω⟩

S has a polar decomposition denoted by

S = J∆1/2,

with J antilinear and unitary, J2 = −1, JMJ = M′ and ∆ is self-adjoint
and non-negative acting as an automorphism ∆itM∆−it = M.



Relative Entropy

Given (M,H , |Ω⟩) + cyclic and separating state ω′ (|Ω′⟩) the relative
Tomita-Takesaki operator Sω′,ω applies as

Sω′,ω A |Ω′⟩ = A∗|Ω⟩

S (since closeable) has again polar decomposition denoted by

Sω′,ω = Jω′,ω∆
1/2
ω′,ω,

with Jω′,ω antilinear and unitary J2 = −1, Jω′,ωMJω′,ω = M′ and ∆ω′,ω

is self-adjoint and non-negative.

The Araki-Uhlmannn relative entropy is given by

Srel(ω
′, ω) = −⟨Ω| log(∆ω′,ω)Ω⟩



Relative Entropy

For the calculation of the relative entropy, five objects are needed.

▶ 2 cyclic and separating states ω(·) = ⟨Ω| · Ω⟩ and ω′(·) = ⟨Ω′| · Ω′⟩

▶ a von Neumann algebra M, a Hilbert space H

▶ a modular operator ∆

In case the two states are unitarily equivalent, i.e.

ω(U · U−1) = ω′(·)

the relative entropy or Araki-Uhlmann entropy formula reduces to

Srel(ω
′, ω) = i

d

dt
⟨Ω|U∆itU∗∆−itΩ⟩|t=0



Relative Entropy II-Example

▶ Bisognano-Wichmann theorem: Restricting the algebra to the
Rindler wedge, i.e. x1 > 0 at x0 = 0 the modular operator is

∆ = e2πL01 ,

where L01 represents the boost generator

L01 =

∫
dd−1x x1 T00(x),

and T00 is the 00-component of the energy-momentum tensor.



Relative Entropy III

Let ω be the vacuum state, and ω′ generated by U|Ω⟩ = e iϕ(f )|Ω⟩ then
the relative (or Araki-Uhlmann) entropy is

S0(ω
′, ω) = i

d

dt
⟨Ω|∆it

ω′,ωΩ⟩|t=0

= i
d

dt
⟨Ω|U∆itU∗∆−itΩ⟩|t=0

= i
d

dt
⟨Ω|e iϕ(f )e2πitL01e−iϕ(f )e−2πitL01Ω⟩|t=0,

where the QFs are localized in the right (or reference) wedge

WR := {x = (x0, x1, · · · , xn ∈ Rd : x1 ≥ |x0|)}

.



NC Generalization

The relative entropy between the deformed field and the vacuum is given
by

Sθ(ω
′, ω) = i

d

dt
⟨Ω|∆it

ω′
θ,ω

Ω⟩|t=0

= i
d

dt
⟨Ω|e iϕθ(f )e2πitL01e−iϕθ(f )e−2πitL01Ω⟩|t=0,

since the modular data is the same for the deformed field as for the
undeformed field (Theorem 3.5 in BLS10).



NC Relative Entropy Results - Technical Part

Theorem

The deformed relative modular operator ∆ω′
θ,ω

= e iϕθ(f ) converges in the
strong limit limθ→0, to the standard relative modular operator ∆ω′,ω, i.e.

lim
θ→0

∆ω′
θ,ω

Ψ → ∆ω′,ωΨ,

for all Ψ ∈ Fs(H ). Hence, the relative entropy for a noncommutative
field theory reduces in the commutative limit to the standard relative
entropy.



Problem I

No Weyl Relations ⇒ Different approach to calculation of relative
entropy ⇒ represent the boost operator as,

L01 = i

∫
dµ(k) a∗(k)

(
ωk

∂

∂k1

)
a(k).

Since only well behaved CCR are between ϕθ and ϕ−θ

▶ Replace the particle creation and annihilation operators in the boost
operator by their deformed versions.

▶ Subtract the remaining term that comes from this deformed
replacement.



Problem II

This procedure gives us

L01 = i

∫
dµ(k) a∗(k)

(
ωk

∂

∂k1

)
a(k)

= i

∫
dµ(k) a∗−θ(k)

(
ωk

∂

∂k1

)
a−θ(k) + B

=: L−θ
01 + B,

where the operator B is given by

B = L01 − i

∫
dµ(k) a∗−θ(k)

(
ωk

∂

∂k1

)
a−θ(k)

= −θ01
∫

dµ(k) a∗(k) (ω2
k − k2

1 )a(k) + θ01(P2
0 − P2

1 )



Solution

The deformed annihilation operator a−θ(k) applied on e−iϕθ(f )|Ω⟩ gives

a−θ(k)e
iϕθ(f )|Ω⟩ = f +(k)

∞∑
n=0

in

n!

(
n−1∑
m=0

ϕθ(f )
n−1−m U(−2θk)ϕθ(f )

m

)
|Ω⟩

Proof.

a−θ(k) exp(iϕθ(f ))|Ω⟩ =
∞∑
n=0

in

n!
a−θ(k)ϕ

n
θ(f )|Ω⟩

=
∞∑
n=0

in

n!
[a−θ(k), ϕ

n
θ(f )]|Ω⟩

=
∞∑
n=1

in

n!

(
[a−θ(k), ϕ

n−1
θ (f )]ϕθ(f ) + [a−θ(k), ϕθ(f )]ϕ

n−1
θ (f )

)
|Ω⟩

=
∞∑
n=1

in

n!
f +(k)

(
e2ikθPϕn−1

θ (f ) + · · ·+ ϕn−1
θ (f )e2ikθP) |Ω⟩



Ansatz

We solved the expressions for the relative entropy by using an expansion
in θ.

Lemma

The deformed field ϕθ on the dense domain D of finite particle vectors,
has a series expansion in θ given as follows

ϕθ(g)Ψ =

(
ϕ(g) +

∞∑
n=1

1
n!
(θP)|µn|ϕ(∇

|µn|g)

)
Ψ

where Ψ ∈ D, we use the multi-index notation notation
|µn| = µ1 + · · ·+ µn and ϕ(∇g) =

∫
d4x ( ∂

∂x g(x))ϕ(x).



Solution II

Theorem

The deformed relative entropy Sθ(ω
′, ω) is positive up to first order in Θ

and is explicitly given by

Sθ(ω
′, ω) = −2π ⟨Ω|e iϕθ(f )L01e

−iϕθ(f )Ω⟩

= S0(ω
′, ω) +

8π
3
Θ

(∫
dµ(k)ωk |f +(k)|2

)2

where S0(ω
′, ω) is the undeformed relative entropy.



Interpretation via Beckenstein Bound - Physical Part

In 2008 a proof of the Bekenstein bound was given for QFT by Casini.

Beckenstein Bound? Beckenstein-Hawking (Black Hole) Formula

SBH = αM2,

where α = 4πG and assume M >> m, with entropy S outside of the
black hole, the total entropy is

S− = SBH + S .

Dropping m into the black hole the entropy is

SBH+m = α(M +m)2

≈ αM2 + 2αMm

= SBH + 2αMm



Interpretation via Beckenstein Bound

Since entropy always increases we have the (poor man’s) inequality

SBH+m − S− ≥ 0,

From which the following bound follows,

S ≤ 2αMm.

Let R be the largest "radius" of the falling system can still be swallowed,
and we identify the energy E = m we obtain the Bekenstein bound, i.e.

S ≤ 2π R E .



Analogously to Casini’s derivation we have

S ≤ 2π R E + Sθ,rel − Srel .

The deformed version of the Beckenstein bound

S ≤ 2π R E +
8π
3

Θm2.

By coefficient comparison of the Beckenstein bound but not neglecting
the m2 term

S ≤ 2π R E + 4πG m2

we identify Θ with the Planck-length squared l2p , i.e. Θ = 3
2G .



Conclusion and Outlook

▶ We found a physical connection of θ to the Planck-length,
supporting the validity of NCQFT

▶ Apply the deformation to relative entropy in spherically symmetric
spacetimes as done in KPV21



Conclusion and Outlook

▶ [GL07] H. Grosse and G. Lechner, “Wedge-Local Quan-
tum Fields and Noncommutative Minkowski Space,” JHEP 11 (2007)

▶ [BLS10] D. Buchholz, G. Lechner and S. J. Summers, “Warped
Convolutions, Rieffel Deformations and the Construction of
Quantum Field Theories,” Commun. Math. Phys. 304 (2011),
95-123

Thank you for your attention!


