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Remarks and outline

1. our result, inspired by Gerlach–Löwen, met the one of Polzer

2. we use more pedestrian operator techniques (which should be
powerful enough, we show that in fact they are)

3. motivation – localization and symmetry breaking

4. statement and some insight into the guts of the proof

5. fresh news from the many–body physics community that are of
interest in this context

6. is Pekar over? (with K. Jachymski – many thanks to the NCN for
the financial support)



Elementary example

Consider a system of N non-relativistic quantum particles interacting via
isotropic pair potentials vij(|xi − xj |):

HN = −
N∑
i=1

1

2mi
∆xi +

∑
i<j

vij(|xi − xj |). (1)

Now this Hamiltonian, defined on (a dense subspace of) ⊗N
i=1L

2(R3), has
no ground state, just because 0 is the infimum of the spectrum of −∆ on
R3 but not an eigenvalue.



Separation of the center of mass.

R = 1
Mt

∑N
i=1 mixi

yi = xi − x1, i = 2, . . . ,N

with Mt =
∑N

i=1 mi the total mass of the system. Then

HN = −∆R

2M
+

N∑
i=2

(
−∆yi

2mi
+ v1,i (yi )) +

N∑
i,j=2

∇yi∇yj

m1
+

∑
2=i<j≤N

vij(yi − yj).

Thus there is no ground state of the whole as above, as the center of
mass is separated from the rest ot the Hamiltonian and behaves as a free
particle. This is attributed to translation invariance.



▶ It is known that under certain circumstances, ground states are
degenerate and do not exhibit the same symmetry as the
Hamiltonian (ex.: the Ising model).

▶ A question arises if translation symmetry can be broken in this way
in field–theoretic models, where one cannot just simply separate out
the motion of the center of mass due to the fluctuating particle
number.

▶ In the physics literature, there has been one popular candidate for
translation symmetry breaking.



The Fröhlich Hamiltonian

Quantum particle interacting with a phonon field.

H = − 1

2m
∆x+

∫
Rd

ϵ(k)a†kakdk+
√
α

∫
Rd

(
v(k)ake

ik·x + v(k)a†ke
−ik·x

)
dk.

▶ v(k) ∈ L2(Rd) - form factor; ϵ(k) > 0 - dispersion relation,

▶ [ak , a
†
q] = δ(k − q),

▶ Domain ⊂ L2(Rd)⊗F , F =
⊕∞

n=0 L
2
sym(Rdn)

▶ α > 0 coupling constant.

Fröhlich 1937, classical counterpart Landau 1933, Feynman’s
path-integral approach 1955, first rigorous paper Lieb–Yamazaki 1958.

▶ Study important for the understanding of transport pheonomena in
semiconductors, polymers, nanostructrues, ultracold gases and
presumably also high-temperature superconductors.



The Fröhlich polaron

▶ Continuum approximation

▶ v(k) = 1√
2π

1
|k| , charge-dipole interaction

▶ ϵ(k) = 1 (optical phonons)

H = −∆x +

∫
R3

a†yay dy +
√
α

∫
R3

a†y + ay

|x − y |2 dy︸ ︷︷ ︸
Oscillators in constant external potential

H. Fröhlich, Theory of electrical breakdown in ionic crystals, Proc. R.
Soc. Lond. A 160, 230-241 (1937).
Landau 1932: translation invariance breaking in the form of a
localization transition suggested in a one–page paper.



The Hamiltonian does not commute with the particle number operator
N =

∫
dka†kak , and thus the number of particles is not a good quantum

number - it fluctuates. However, it does commute with the total
momentum:

[H,−i∇x + Pf ] = 0 (2)

Pf =

∫
dk k a†kak (3)

(the field momentum), and is hence translationally invariant.



Translation invariance and LLPT

We have translation invariance, but cannot really ”separate the center of
mass”. We can, however, fix the total momentum of the system.

▶ Lee-Low-Pines transformation

e iPf xa†ke
−iPf x = e ikxa†k

After the transformation, H turns into

H =
1

2m
(−i∇x −Pf )

2+

∫
Rd

ϵ(k)a†kakdk+
√
α

∫
Rd

(
v(k)ak + v(k)a†k

)
dk .

and thus H unitarily equivalent to
∫
dP|P⟩⟨P| ⊗HP with

HP =
1

2m
(P − Pf )

2 +

∫
Rd

ϵ(k)a†kakdk +
√
α

∫
Rd

(
v(k)ak + v(k)a†k

)
dk .

Energy-momentum relation

E (P) = inf spec HP

(ground-state energy at fixed total momentum P).



The semiclassical counterpart of the quantum problem is given by the
electronic Pekar functional

EPek
α (ψ) =

1

2m

∫
|∇ψ(x)|2 − α

∫∫
|ψ(x)|2 1

|x − y | |ψ(y)|
2dxdy

Effectively, the polarization acts back on the electron in the form of a
Coulomb potential.

▶ Pekar energy:

EPek(α) = inf
ψ∈L2(Rd ),∥ψ∥2=1

EPek
α (ψ).

▶ It is known that E0/E
Pek(α) → 1 as α→ ∞ (also for a certain class

of regular form factors). On the other hand, EPek
α (ψ) possesses a

manifold of ground states – localization and translation symmetry
breaking occurs at the semiclassical level. This observation
supported the idea of localization also for the full quantum model
for α large enough.



The question is related to the properties of the energy–momentum
relation. Heuristically, suppose that the set of global minima of E (P), M
has a non–zero Lebesgue measure, and construct the wave packet

Ψ =

∫
P∈M

dPλ(P)e iPx |φP⟩ (4)

where |φP⟩ is a ground state of HP , and λ(P) is some square-integrable
function. Then Ψ is square integrable and describes a localized state of
the system, and

HΨ =

∫
P∈M

dPλ(P)e iPxHP |φP⟩ = EΨ (5)

and Ψ would be a localized function - a ground state of H, breaking the
translational symmetry, just as in the classical model.



Statements

We disprove this possibility in the folllowing

Theorem (Lampart-Mitrouskas-M 2022)

In the Fröhlich polaron model describing an electron with the induced
polarization (quantum) field, it holds that for all α ≥ 0 and all P with
P ̸= 0,

E (0) < E (P). (6)

▶ Proof is based on the idea of employing an auxiliary Hamiltonian,
which traces back to Gerlach and Löwen 1988. We benefited from
the progress in the analysis of the Fröhlich model in the math
physics literature since then, most notably Moeller 2006.



Ideas behind the proof

Let Q be chosen such that minP E (P) = E (Q). Assume that in fact
Q ̸= 0, and consider the original LLP-transformed Hamiltonian

Hl =
(−i∇x − Pf )

2

2m
+

∫
a†yaydy +

√
α

∫
a†y + ay

|y |2 dy (7)

on L2([0, l ]3)⊗F , where l > 0 is chosen s.t. Q ∈
(
2π
l Z

)3
. Then Hl has

a block decomposition

Hl =
⊕

P∈( 2π
l Z)3

|P⟩⟨P| ⊗HP (8)

and – what is crucial – has a ground state L−3/2e iQx ⊗φQ . Now if Q ̸= 0,
then the ground state is necessarily degenerate by rotation invariance.



Let α > 0. Then for all λ > − inf specHl the resolvent of (Hl + λ)−1 is
positivity improving with respect to the cone

C := {Ψ ∈ L2([0, l ]3)⊗F| ∀n ∈ N0 : (−1)nΨ(x , y1, · · · yn) ≥ 0}. (9)

Recall that a (Hilbert) cone K is a set of elements of a Hilbert space
such that K is closed and

1. ⟨v |u⟩ ≥ 0 for all u, v ∈ K ;

2. for all w in the Hilbert space, there exist u, v ∈ K such that
w = u − v and u and v are orthogonal.

Moreover, a bounded operator A is

1. positivity preserving w.r.t. K if Au ∈ K for all u ∈ K ;

2. positivity improving if ⟨Au|v⟩ > 0 for any u, v ∈ K\{0}.
Note that with our choice of cone, the interaction energy is negative for
all Ψ ∈ C.



Assume that A is positive definite and has a maximal eigenvalue e with
the corresponding eigenvector w , and that it is positivity improving with
respect to some cone K . Then w must have multiplicity one.



By the definition of a cone, we can write w = w+ − w− where w+,w−
are in the cone K . Then

e = ⟨w ,Aw⟩
= ⟨w+,Aw+⟩+ ⟨w−,Aw−⟩ − 2 ⟨w−,Aw+⟩︸ ︷︷ ︸

≥0

≤ ⟨(w+ + w−),A(w+ + w−)⟩ ≤ e, (10)

since e is the largest eigenvalue and ∥w+ + w−∥ = ∥w∥ = 1. We must
thus have equality in (10), so

⟨w−,Aw+⟩ = 0. (11)

Since A improves positivity this implies that either w+ or w− are equal to
zero, i.e. w ∈ K or −K . Now assume there exist two orthogonal real
eigenfunctions Φ,Ψ ∈ ker(A− e). By changing signs if necessary, we may
assume that Φ,Ψ ∈ K \ {0}. Then

⟨Φ,Ψ⟩ = e−1⟨Φ,AΨ⟩ > 0, (12)

a contradiction, so e is a simple eigenvalue.



Corollary: E (Q) must then be a simple eigenvalue. But E (−Q) is also an
eigenvalue by rotation invariance, which contradicts Q ̸= 0. Hence,
Q = 0.
Caution: what is essential here is that there exists Q such that
E (Q) = infP E (Q), and that such an E (Q) must be an eigenvalue. This
follows from the fact that for models with UV cutoff λ one has

1. inf ess specHλP = Eλ(0) + 1

2. lim|P|→∞ |Eλ(P)− inf ess spec HλP| = 0

and from the norm resolvent convergence of the regularized Hamiltonians
to the original hamiltonian of our problem.



News from the physicists

1. Should one regard E (0) < E (P) as obvious?

HFH = −t
∑

x,y :|x−y |=1

(
b†xby + a†xay

)
+ U

∑
x

b†xbxa
†
xax (13)

Results by G. Pascual (private communication)



2. Should one ignore Pekar localization altogether?
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