lassical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Null energy bounds for non-minimally coupled scalar fields

Diego Pardo¹ in collaboration with Jackson R. Fliss², Ben Freivogel³, Eleni-A. Kontou¹

¹King's College London ²University of Cambridge ³University of Amsterdam

47th LQP Workshop 21 September 2023 Poznań, Poland

Based on: 2309.10848

lassical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

Conclusion 000

Contents

Introduction

Classical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

Conclusion

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

lassical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

Conclusion 000

Contents

Introduction

Classical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

lassical energy conditions

 $\begin{array}{c} Quantum \ null \ energy \ inequalities \\ 00000 \end{array}$

NMC as an effective field theory 0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 000

Energy conditions (EC)

Pointwise restrictions imposed on the stress-energy tensor in order to encode physically reasonable constraints on the energy density

 $\begin{array}{c} Quantum \ null \ energy \ inequalities \\ 00000 \end{array}$

NMC as an effective field theory 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion 000

Energy conditions (EC)

Pointwise restrictions imposed on the stress-energy tensor in order to encode physically reasonable constraints on the energy density

Null energy condition (NEC):

- $T_{\mu\nu}\ell^{\mu}\ell^{\nu} \ge 0$ with ℓ^{μ} null vector
- Perfect fluid: $\rho + P \ge 0$

NMC as an effective field theory 0000

Conclusion

Energy conditions (EC)

Pointwise restrictions imposed on the stress-energy tensor in order to encode physically reasonable constraints on the energy density

Null energy condition (NEC):

- $T_{\mu\nu}\ell^{\mu}\ell^{\nu} \ge 0$ with ℓ^{μ} null vector
- Perfect fluid: $\rho + P \ge 0$
- Minimal coupling to gravity for free massive scalar field $\phi,$ mass $m\geq 0$

$$S = \int d^n x \sqrt{-g} \left[\frac{R - 2\Lambda}{16\pi G_N} - \frac{1}{2} (\nabla \phi)^2 - \frac{1}{2} m^2 \phi^2 \right]$$

$$T_{\mu\nu} = (\nabla_\mu \phi) (\nabla_\nu \phi) - \frac{1}{2} g_{\mu\nu} (m^2 \phi^2 + (\nabla \phi)^2)$$

$$\rho_n \equiv T_{\mu\nu} \ell^\mu \ell^\nu = (\ell^\mu \nabla_\mu \phi) (\ell^\nu \nabla_\nu \phi)$$

- NEC is obeyed.

 $\begin{array}{c} Quantum \ null \ energy \ inequalities \\ 00000 \end{array}$

NMC as an effective field theory 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conclusion

Energy conditions (EC)

Pointwise restrictions imposed on the stress-energy tensor in order to encode physically reasonable constraints on the energy density

Null energy condition (NEC):

• Non-minimal coupling (NMC) to gravity for a free massive scalar field ϕ , mass $m \ge 0$

$$S = \int d^n x \sqrt{-g} \left[\frac{(R-2\Lambda)}{16\pi G_N} - \frac{1}{2} (\nabla\phi)^2 - \frac{1}{2} \xi R \phi^2 - \frac{1}{2} m^2 \phi^2 \right]$$
$$T_{\mu\nu} = (\nabla_\mu \phi) (\nabla_\nu \phi) - \frac{1}{2} g_{\mu\nu} (m^2 \phi^2 + (\nabla\phi)^2) + \xi (-g_{\mu\nu} \Box_g - \nabla_\mu \nabla_\nu + G_{\mu\nu}) \phi^2$$
$$\rho_n \equiv T_{\mu\nu} \ell^\mu \ell^\nu = (1-2\xi) (\ell^\mu \nabla_\mu \phi) (\ell^\nu \nabla_\nu \phi) - 2\xi \left(\phi (\ell^\mu \ell^\nu \nabla_\mu \nabla_\nu \phi) + \frac{1}{2} R_{\mu\nu} \ell^\mu \ell^\nu \phi^2 \right)$$
$$- \xi \text{ is a dimensionless coupling to gravity}$$

- NEC is violated even for $R_{\mu\nu} = 0$

Quantum null energy inequalities NMC as an effective field theory

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Quantum energy inequalities (QEIs)

 All pointwise energy conditions are violated in the context of quantum field theory [Epstein, Glaser, Jaffe, 1965]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantum energy inequalities (QEIs)

- All pointwise energy conditions are violated in the context of quantum field theory [Epstein, Glaser, Jaffe, 1965]
- Quantum fields satisfy QEIs: lower bounds on weighted averages of components of the expectation value of the stress-energy tensor
- QEIs have been proved for free theories in Minkowski and curved spacetimes

Quantum energy inequalities (QEIs)

- All pointwise energy conditions are violated in the context of quantum field theory [Epstein, Glaser, Jaffe, 1965]
- Quantum fields satisfy QEIs: lower bounds on weighted averages of components of the expectation value of the stress-energy tensor
- QEIs have been proved for free theories in Minkowski and curved spacetimes
- Timelike average energy density for massless scalar field minimally coupled in Minkowski spacetime

$$\int dt \langle : T_{\mu\nu} : \ell^{\mu} \ell^{\nu} \rangle_{\omega} f^2(t) \ge -\frac{1}{12\pi^2} \int dt f''(t)^2$$

For normalized Gaussian

$$\frac{1}{t_0} \int dt \langle : T_{\mu\nu} : \ell^{\mu} \ell^{\nu} \rangle_{\omega} f^2(t/t_0) \ge -\frac{1}{64\pi^2 t_0^4}$$

Classical energy conditions

 $\begin{array}{c} Quantum \ null \ energy \ inequalities \\ 00000 \end{array}$

NMC as an effective field theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 000

Can non-minimally coupled theories violate the usual laws of physics?

- Review of the classical theory. Can non-minimal coupling (NMC) lead to exotic spacetimes?
- Analisis in Jordan and Einstein frames
- QEIs for NMC theories
- Can we consider NMC as the first term in an effective field theory (EFT)?

Classical energy conditions

Quantum null energy inequalities

NMC as an effective field theory 0000

Conclusion 000

Contents

Introduction

Classical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

٠

Quantum null energy inequalities NMC as an effective field theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ANEC and effective ANEC

Average null energy condition (ANEC)

$$\int \rho_n d\lambda = \int (\ell^\mu \nabla_\mu \phi) (\ell^\nu \nabla_\nu \phi) d\lambda - \xi \int \ell^\mu \ell^\nu \nabla_\mu \nabla_\nu (\phi^2) d\lambda$$

• Obeyed by minimally ($\xi = 0$) and NMC massive free scalar fields for $R_{\mu\nu} = 0$

Classical energy conditions

Quantum null energy inequalities

NMC as an effective field theory 0000

Conclusion

ANEC and effective ANEC

Average null energy condition (ANEC)

$$\int \rho_n d\lambda = \int (\ell^\mu \nabla_\mu \phi) (\ell^\nu \nabla_\nu \phi) d\lambda - \xi \int \ell^\mu \ell^\nu \nabla_\mu \nabla_\nu (\phi^2) d\lambda$$

• Obeyed by minimally ($\xi = 0$) and NMC massive free scalar fields for $R_{\mu\nu} = 0$

Effective ANEC

We define an effective stress-energy tensor by separating the curvature terms from the field terms in the Einstein equation

$$G_{\mu\nu} = 8\pi G_N T_{\mu\nu}(\phi, G_{\mu\nu}(g_{\mu\nu}), g_{\mu\nu}) \to G_{\mu\nu} = 8\pi G_N T_{\mu\nu}^{\text{eff}}$$

where

$$T_{\mu\nu}^{\text{eff}} = \frac{1}{1 - 8\pi G_N \xi \phi^2} \left((\nabla_\mu \phi) (\nabla_\nu \phi) - \frac{1}{2} g_{\mu\nu} \left[m^2 \phi^2 + (\nabla \phi)^2 + \frac{\Lambda}{4\pi G_N} \right] + \xi (-g_{\mu\nu} \Box_g - \nabla_\mu \nabla_\nu) \phi^2 \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Classical energy conditions

 $\begin{array}{c} Quantum \ null \ energy \ inequalities \\ 00000 \end{array}$

NMC as an effective field theory 0000

Conclusion

ANEC and effective ANEC

Average null energy condition (ANEC)

$$\int \rho_n d\lambda = \int (\ell^\mu \nabla_\mu \phi) (\ell^\nu \nabla_\nu \phi) d\lambda - \xi \int \ell^\mu \ell^\nu \nabla_\mu \nabla_\nu (\phi^2) d\lambda$$

• Obeyed by minimally ($\xi = 0$) and NMC massive free scalar fields for $R_{\mu\nu} = 0$

Effective ANEC

$$\int_{\gamma} \rho_n^{\rm eff} d\lambda = \int_{\gamma} d\lambda \frac{1 - 8\pi\xi G_N (1 - 4\xi) \phi^2}{(1 - 8\pi G_N \xi \phi^2)^2} \left(\frac{d\phi}{d\lambda}\right)^2$$

- Non-negative for $\xi < 0$ and $\xi > 1/4$
- Negative for $0 < \xi < 1/4$ and large field $8\pi\xi(1-4\xi)G_N\phi^2>1$

Quantum null energy inequalities

NMC as an effective field theory 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion 000

Einstein and Jordan frames

• Transform the action of a non-minimally coupled scalar field (Jordan frame, JF) into the minimally coupled one (Einstein frame, EF) by a conformal transformation $\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}$ and field redefinition $\tilde{\phi} = F(\phi)$.

Quantum null energy inequalities

NMC as an effective field theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conclusion

Einstein and Jordan frames

- Transform the action of a non-minimally coupled scalar field (Jordan frame, JF) into the minimally coupled one (Einstein frame, EF) by a conformal transformation $\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}$ and field redefinition $\tilde{\phi} = F(\phi)$.
- The minimally coupled action is

$$S = \int d^n x \sqrt{-\tilde{g}} \left[\frac{\tilde{R}}{16\pi G} + \frac{1}{2} (\tilde{\nabla} \tilde{\phi})^2 - \tilde{V}(\tilde{\phi}) \right] \,, \qquad \text{with}$$

$$\begin{split} \Omega &= (1 - 8\pi G\xi \phi^2)^{1/(n-2)} \\ \tilde{V}(\tilde{\phi}) &= \Omega^{-n} \left(\frac{\Lambda}{8\pi G_N} + V(\phi)\right), \quad \text{where} \quad \phi = F^{-1}(\tilde{\phi}) \end{split}$$

Quantum null energy inequalities NMC as an effective field theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Einstein and Jordan frames

The stress tensor in the Einstein frame

$$T_{\mu\nu} = (\tilde{\nabla}_{\mu}\tilde{\phi})(\tilde{\nabla}_{\nu}\tilde{\phi}) - \frac{1}{2}\tilde{g}_{\mu\nu}(2\tilde{V}(\tilde{\phi}) - (\tilde{\nabla}\tilde{\phi})^2)$$

with null energy

$$\tilde{\rho}_n = (\ell^\mu \tilde{\nabla}_\mu \tilde{\phi}) (\ell^\nu \tilde{\nabla}_\nu \tilde{\phi})$$

- NEC is obeyed in the EF but not in the JF.
- The two frames are not equivalent in terms of the classical EC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion 000

Einstein and Jordan frames

• The stress tensor in the Einstein frame

$$T_{\mu\nu} = (\tilde{\nabla}_{\mu}\tilde{\phi})(\tilde{\nabla}_{\nu}\tilde{\phi}) - \frac{1}{2}\tilde{g}_{\mu\nu}(2\tilde{V}(\tilde{\phi}) - (\tilde{\nabla}\tilde{\phi})^2)$$

with null energy

$$\tilde{\rho}_n = (\ell^\mu \tilde{\nabla}_\mu \tilde{\phi}) (\ell^\nu \tilde{\nabla}_\nu \tilde{\phi})$$

- NEC is obeyed in the EF but not in the JF.
- The two frames are not equivalent in terms of the classical EC.
- Physically relevant question: Can NMC lead to exotic spacetime geometries?
 - Transversable wormholes require ANEC violation. Only possible for large field values. Unphysical for NMC as EFT.
- JF and EF can be considered equivalent in this sense.

lassical energy conditions

Quantum null energy inequalities $\bigcirc 0000$

NMC as an effective field theory 0000

Conclusion 000

Contents

Introduction

Classical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 000

Null QEIs for minimal coupling

We would like to prove a QEIs over a null geodesic.

$$\int d\lambda \langle : T_{\mu\nu} : \ell^{\mu} \ell^{\nu} \rangle_{\omega} f^2(\lambda) \ge -A \int d\lambda f'(\lambda)^2$$

[Fewster, Roman, 2002]: The null energy averaged over a null geodesic can become arbitrarily negative.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conclusion 000

Null QEIs for minimal coupling

We would like to prove a QEIs over a null geodesic.

$$\int d\lambda \langle : T_{\mu\nu} : \ell^{\mu} \ell^{\nu} \rangle_{\omega} f^2(\lambda) \ge -A \int d\lambda f'(\lambda)^2$$

[Fewster, Roman, 2002]: The null energy averaged over a null geodesic can become arbitrarily negative.

Idea Introduce an ultraviolet cutoff ℓ_{UV} which restricts the three-momenta

Smeared null energy condition (SNEC)

• SNEC for the minimally coupled scalar field in 4d Minkowski spacetime [Freivogel, Krommydas, 2018]

$$\int d\lambda \langle : T_{\mu\nu} : \ell^{\mu} \ell^{\nu} \rangle_{\omega} f^2(\lambda) \ge -\frac{4B}{\ell_{UV}^2} ||f'||^2$$

NMC as an effective field theory $_{\rm OOOO}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 000

Null QEIs for minimal coupling

Double smeared null energy condition (DSNEC)

- Smear over two null directions x^{\pm} : test function supported on δ^{\pm} , [Fliss, Freivogel, Kontou, 2021].
- DSNEC for minimally coupled scalar field

$$\int d^2 x^{\pm} f^2(x^{\pm}) \langle T_{--} \rangle_{\omega} \ge -\frac{\mathcal{N}}{(\delta^+)^{n/2-1} (\delta^-)^{n/2+1}}$$

00000

Quantum null energy inequalities NMC as an effective field theory

DSNEC for non-minimal coupling

 Bound for a massless scalar field in n-dimensional Minkowski spacetime.

$$\int d^2 x^{\pm} f(x^{\pm})^2 \langle :T_{--}: \rangle_{\psi} \ge -P_n \left(\int dx^+ (f_+^{(n/2)}(x^+))^2 \right)^{\frac{n-2}{2n}} \left(\int dx^- (f_-^{(n/2)}(x^-))^2 \right)^{\frac{n+2}{2n}} -|\xi| \int d^2 x^{\pm} \langle :\phi^2: \rangle_{\psi} \partial_-^2 (f(x^{\pm})^2)$$

Classical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion

DSNEC for non-minimal coupling

 Bound for a massless scalar field in *n*-dimensional Minkowski spacetime.

$$\begin{split} \int d^2 x^{\pm} f(x^{\pm})^2 \langle :T_{--}: \rangle_{\psi} &\geq -P_n \left(\int dx^+ (f_+^{(n/2)}(x^+))^2 \right)^{\frac{n-2}{2n}} \left(\int dx^- (f_-^{(n/2)}(x^-))^2 \right)^{\frac{n+2}{2n}} \\ &- |\xi| \phi_{\max}^2 \int d^2 x^{\pm} \partial_-^2 (f(x^{\pm})^2) \end{split}$$

- ϕ_{\max} is a finite constant such that $|\langle:\phi^2:\rangle_\psi|\leq \phi_{\max}^2$
- State-dependent QEI
- Bound for general ξ
- Violation of the classical NEC results in state-dependent bound

Classical energy conditions Quantum null energy inequalities NMC as an effective field theory 0000

DSNEC for non-minimal coupling

• ANEC from DSNEC: Take the limit $\delta^+ \to 0$ and $\delta^- \to \infty$ while $\delta^+ \delta^- \equiv \alpha^2$ fixed

$$\int_{-\infty}^{\infty} dx^{-} \langle T_{--}(x^{-}) \rangle_{\omega} \ge 0$$

Classical energy conditions

Quantum null energy inequalities $0000 \bullet$

NMC as an effective field theory $_{\rm OOOO}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion 000

DSNEC for non-minimal coupling

• ANEC from DSNEC: Take the limit $\delta^+\to 0$ and $\delta^-\to\infty$ while $\delta^+\delta^-\equiv \alpha^2$ fixed

$$\int_{-\infty}^{\infty} dx^{-} \langle T_{--}(x^{-}) \rangle_{\omega} \ge 0$$

• SNEC from DSNEC: We impose $\delta^+ \to 0$ while $\delta^+ \delta^- \to \ell_{\rm UV}^2$

$$\int dx^{-} f_{-}(x^{-})^{2} \langle T_{--} \rangle_{\psi} \geq -\frac{p_{n}}{\ell_{\mathsf{UV}}^{n-2}} \int dx^{-} (\partial_{-} f(x^{-}))^{2} -\frac{|\xi| \tilde{\phi}_{\max}^{2}}{\ell_{\mathsf{UV}}^{n-2}} \int dx^{-} \left| (\partial_{-}^{2} (f(x^{-})^{2})) \right|$$

 Application to prove singularity and area theorems with NMC theory, [Freivogel, Kontou, Krommydas, 2022], [Kontou, Sacchi, 2023]

Classical energy conditions

Quantum null energy inequalities

NMC as an effective field theory \bullet 000

Conclusion 000

Contents

Introduction

Classical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで

lassical energy conditions

Quantum null energy inequalities

NMC as an effective field theory $_{\odot \Theta \odot \odot}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Conclusion 000

The Einstein frame

• Reminder: classically, the Einstein frame stress tensor is

$$\tilde{T}^{\text{classical}}_{\mu\nu} = (\tilde{\nabla}_{\mu}\tilde{\phi})(\tilde{\nabla}_{\nu}\tilde{\phi}) - \frac{1}{2}\tilde{g}_{\mu\nu}(2\tilde{V}(\tilde{\phi}) + (\tilde{\nabla}\tilde{\phi})^2)$$

with an effective potential

$$\tilde{V}(\tilde{\phi}) = \left(1 - 8\pi G_N \,\xi \,\phi^2\right)^{\frac{n}{2-n}} \left(\frac{\Lambda}{8\pi G_N} + V(\phi)\right) \,, \quad \phi = F^{-1}(\tilde{\phi})$$

lassical energy conditions

 $\begin{array}{c} \mbox{Quantum null energy inequalities} \\ \mbox{00000} \end{array}$

NMC as an effective field theory 0 = 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion 000

The Einstein frame

• Reminder: classically, the Einstein frame stress tensor is

$$\tilde{T}^{\text{classical}}_{\mu\nu} = (\tilde{\nabla}_{\mu}\tilde{\phi})(\tilde{\nabla}_{\nu}\tilde{\phi}) - \frac{1}{2}\tilde{g}_{\mu\nu}(2\tilde{V}(\tilde{\phi}) + (\tilde{\nabla}\tilde{\phi})^2)$$

with an effective potential

$$\tilde{V}(\tilde{\phi}) = \left(1 - 8\pi G_N \,\xi \,\phi^2\right)^{\frac{n}{2-n}} \left(\frac{\Lambda}{8\pi G_N} + V(\phi)\right) , \quad \phi = F^{-1}(\tilde{\phi})$$

• For small free scalar field ϕ , we do a power series expansion

$$\tilde{\phi} = \phi \left(1 + \frac{1}{6} \left(1 + \frac{\xi}{\xi_c} \right) \left(8\pi G_N \xi \, \phi^2 \right) + \ldots \right)$$

leading to an effective potential, for n=4

$$\tilde{V}(\tilde{\phi}) = \frac{\Lambda}{8\pi G_N} + \frac{1}{2} \left(m^2 + 4\xi\Lambda\right) \tilde{\phi}^2 + \frac{1}{6} \left(m^2 \left(5 - \frac{\xi}{\xi_c}\right) + 2\Lambda\xi \left(7 - 2\frac{\xi}{\xi_c}\right)\right) (8\pi G_N \xi) \tilde{\phi}^4 + \dots$$

Classical energy conditions

 $\begin{array}{c} \mbox{Quantum null energy inequalities}\\ \mbox{00000} \end{array}$

NMC as an effective field theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion 000

The Einstein frame

Perturbative expansion in $8\pi G_N \xi \tilde{\phi}^2$

• Massive theory with quartic interaction $\frac{\lambda}{4!}\tilde{\phi}^4$:

$$m_{\text{eff}}^2 = m^2 + 4\xi\Lambda$$
$$\lambda = 4\left(m^2\left(5 - \frac{\xi}{\xi_c}\right) + 2\Lambda\xi\left(7 - 2\frac{\xi}{\xi_c}\right)\right)(8\pi G_N\xi)$$

Classical energy conditions

 $\begin{array}{c} Quantum \ null \ energy \ inequalities \\ 00000 \end{array}$

NMC as an effective field theory 0000

Conclusion 000

The Einstein frame

Perturbative expansion in $8\pi G_N \xi \tilde{\phi}^2$

• Massive theory with quartic interaction $\frac{\lambda}{4!}\tilde{\phi}^4$:

$$m_{\text{eff}}^2 = m^2 + 4\xi\Lambda$$

$$\lambda = 4\left(m^2\left(5 - \frac{\xi}{\xi_c}\right) + 2\Lambda\xi\left(7 - 2\frac{\xi}{\xi_c}\right)\right)(8\pi G_N\xi)$$

- [Bostelmann, Cadamuro, Fewster, 2013], [Kontou, Sanders, 2020] : Bosonic free theories that obey classcial EC \rightarrow QEI with state-independent bound
- Classical theory in Einstein frame obeys the NEC, but it is self-interacting. Not state-independent QEI expected

assical energy conditions

 $\begin{array}{c} \mbox{Quantum null energy inequalities}\\ \mbox{00000} \end{array}$

NMC as an effective field theory $000 \bullet$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Conclusion 000

The Einstein frame. Quantum corrections Euclidean path integral of matter coupled to gravity

$$Z_{
m grav+matter} = \int \mathcal{D}g_{\mu
u}\mathcal{D}\phi \, e^{-I_{\xi}[\phi,g,V]}$$

where

$$I_{\xi}[\phi, g, V] = \int d^{n}x \sqrt{g} \left(-\frac{R-2\Lambda}{16\pi G_{N}} + \frac{1}{2} (\nabla\phi)^{2} + \frac{1}{2}m^{2}\phi^{2} + \frac{\xi}{2}R\phi^{2} + V(\phi) \right)$$

issical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

Conclusion 000

The Einstein frame. Quantum corrections Euclidean path integral of matter coupled to gravity

$$Z_{
m grav+matter} = \int \mathcal{D}g_{\mu
u}\mathcal{D}\phi \, e^{-I_{\xi}[\phi,g,V]}$$

where

$$I_{\xi}[\phi, g, V] = \int d^{n}x \sqrt{g} \left(-\frac{R-2\Lambda}{16\pi G_{N}} + \frac{1}{2}(\nabla\phi)^{2} + \frac{1}{2}m^{2}\phi^{2} + \frac{\xi}{2}R\phi^{2} + V(\phi) \right)$$

• Change of path-integral variables $(g_{\mu\nu}, \phi) \rightarrow (\tilde{g}_{\mu\nu}, \tilde{\phi})$, such that $(\xi \rightarrow \tilde{\xi} = 0)$ and a new \tilde{V} :

 $Z_{\text{grav}+\text{matter}} = \int \! D\tilde{g}_{\mu\nu} \mathcal{D}\tilde{\phi} \, e^{-I_0[\tilde{\phi},\tilde{g},\tilde{V}] + \log J[\tilde{\phi},\tilde{g}]} \text{ where } J[\tilde{\phi},\tilde{g}] = \det \frac{\delta g_{\mu\nu}}{\delta \tilde{g}_{\mu\nu}} \det \frac{\delta \phi}{\delta \tilde{\phi}}$

- In general, we expect J to introduce all possible irrelevant couplings, controlled by $M_{\rm cutoff}^{-1} \sim \phi_{\rm max}^{2/(2-n)}$ (dim. analysis).
- By assuming field values bounded by $|8\pi G_N \xi \phi^2| \ll 1$, we get EFT that allows mappings from JF to EF, with modified $\tilde{V}(\tilde{\phi})$

lassical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

Conclusion •00

Contents

Introduction

Classical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで

lassical energy conditions

 $\begin{array}{c} \mbox{Quantum null energy inequalities}\\ \mbox{00000} \end{array}$

NMC as an effective field theory

Conclusion

Conclusion

 $\begin{array}{c} Quantum \ null \ energy \ inequalities \\ 00000 \end{array}$

NMC as an effective field theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion ○●○

Conclusion

Can NMC theories allow exotic physics?

• Classically, NMC fields can violate the NEC. A transformation to EF leads to a MC theory where NEC is obeyed.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Conclusion

- Classically, NMC fields can violate the NEC. A transformation to EF leads to a MC theory where NEC is obeyed.
- The ANEC -the relevant EC to allow exotic spacetimes- is only violated if unbounded field values are allowed.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Conclusion

- Classically, NMC fields can violate the NEC. A transformation to EF leads to a MC theory where NEC is obeyed.
- The ANEC -the relevant EC to allow exotic spacetimes- is only violated if unbounded field values are allowed.
- For the quantized theory, DSNEC admits a lower bound dependent on the cutoff, i.e. state-dependent lower bound.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Conclusion

- Classically, NMC fields can violate the NEC. A transformation to EF leads to a MC theory where NEC is obeyed.
- The ANEC -the relevant EC to allow exotic spacetimes- is only violated if unbounded field values are allowed.
- For the quantized theory, DSNEC admits a lower bound dependent on the cutoff, i.e. state-dependent lower bound.
- We have proved ANEC from DSNEC

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Conclusion

- Classically, NMC fields can violate the NEC. A transformation to EF leads to a MC theory where NEC is obeyed.
- The ANEC -the relevant EC to allow exotic spacetimes- is only violated if unbounded field values are allowed.
- For the quantized theory, DSNEC admits a lower bound dependent on the cutoff, i.e. state-dependent lower bound.
- We have proved ANEC from DSNEC
- Transformation to EF leads to self-interacting fields, i.e. state-dependent bounds for QEIs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion

Conclusion

- Classically, NMC fields can violate the NEC. A transformation to EF leads to a MC theory where NEC is obeyed.
- The ANEC -the relevant EC to allow exotic spacetimes- is only violated if unbounded field values are allowed.
- For the quantized theory, DSNEC admits a lower bound dependent on the cutoff, i.e. state-dependent lower bound.
- We have proved ANEC from DSNEC
- Transformation to EF leads to self-interacting fields, i.e. state-dependent bounds for QEIs.
- The EFT remains valid when the irrelevant interactions are suppressed by $M_{\rm cutoff}^{-1}.$

lassical energy conditions

Quantum null energy inequalities

NMC as an effective field theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Conclusion ○○●

Thank you for your attention!

Based on: 2309.10848