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Energy conditions (EC)

Pointwise restrictions imposed on the stress-energy tensor in order
to encode physically reasonable constraints on the energy density

Null energy condition (NEC):

• Tµνℓ
µℓν ≥ 0 with ℓµ null vector

• Perfect fluid: ρ+ P ≥ 0

• Minimal coupling to gravity for free massive scalar field ϕ,
mass m ≥ 0

S =

∫
dnx

√
−g

[
R− 2Λ

16πGN
− 1

2
(∇ϕ)2 − 1

2
m2ϕ2

]
Tµν = (∇µϕ)(∇νϕ)−

1

2
gµν(m

2ϕ2 + (∇ϕ)2)

ρn ≡ Tµνℓ
µℓν = (ℓµ∇µϕ)(ℓ

ν∇νϕ)

– NEC is obeyed.
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Energy conditions (EC)

Pointwise restrictions imposed on the stress-energy tensor in order
to encode physically reasonable constraints on the energy density

Null energy condition (NEC):

• Non-minimal coupling (NMC) to gravity for a free massive
scalar field ϕ, mass m ≥ 0

S =

∫
dnx

√
−g

[
(R− 2Λ)

16πGN
− 1

2
(∇ϕ)2 − 1

2
ξRϕ2 − 1

2
m2ϕ2

]
Tµν = (∇µϕ)(∇νϕ)−

1

2
gµν(m

2ϕ2 + (∇ϕ)2) + ξ(−gµν□g −∇µ∇ν +Gµν)ϕ
2

ρn ≡ Tµνℓ
µℓν = (1−2ξ)(ℓµ∇µϕ)(ℓ

ν∇νϕ)−2ξ

(
ϕ(ℓµℓν∇µ∇νϕ) +

1

2
Rµνℓ

µℓνϕ2

)
– ξ is a dimensionless coupling to gravity
– NEC is violated even for Rµν = 0
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Quantum energy inequalities (QEIs)

• All pointwise energy conditions are violated in the context of
quantum field theory [Epstein, Glaser, Jaffe, 1965]

• Quantum fields satisfy QEIs: lower bounds on weighted
averages of components of the expectation value of the
stress-energy tensor

• QEIs have been proved for free theories in Minkowski and
curved spacetimes

• Timelike average energy density for massless scalar field
minimally coupled in Minkowski spacetime∫

dt⟨: Tµν : ℓµℓν⟩ωf2(t) ≥ − 1

12π2

∫
dtf ′′(t)2

For normalized Gaussian

1

t0

∫
dt⟨: Tµν : ℓµℓν⟩ωf2(t/t0) ≥ − 1

64π2t40
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Goals

Can non-minimally coupled theories violate the usual laws of
physics?

• Review of the classical theory. Can non-minimal coupling
(NMC) lead to exotic spacetimes?

• Analisis in Jordan and Einstein frames

• QEIs for NMC theories

• Can we consider NMC as the first term in an effective field
theory (EFT)?
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ANEC and effective ANEC

Average null energy condition (ANEC)∫
ρndλ =

∫
(ℓµ∇µϕ)(ℓ

ν∇νϕ)dλ− ξ

∫
ℓµℓν∇µ∇ν(ϕ

2)dλ

• Obeyed by minimally (ξ = 0) and NMC massive free scalar
fields for Rµν = 0
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ANEC and effective ANEC

Average null energy condition (ANEC)∫
ρndλ =

∫
(ℓµ∇µϕ)(ℓ

ν∇νϕ)dλ− ξ

∫
ℓµℓν∇µ∇ν(ϕ

2)dλ

• Obeyed by minimally (ξ = 0) and NMC massive free scalar
fields for Rµν = 0

Effective ANEC

We define an effective stress-energy tensor by separating the
curvature terms from the field terms in the Einstein equation

Gµν = 8πGNTµν(ϕ,Gµν(gµν), gµν) → Gµν = 8πGNT eff
µν

where

T eff
µν =

1

1− 8πGNξϕ2

(
(∇µϕ)(∇νϕ)−

1

2
gµν

[
m2ϕ2 + (∇ϕ)2

+
Λ

4πGN

]
+ ξ(−gµν□g −∇µ∇ν)ϕ

2

)
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ANEC and effective ANEC

Average null energy condition (ANEC)∫
ρndλ =

∫
(ℓµ∇µϕ)(ℓ

ν∇νϕ)dλ− ξ

∫
ℓµℓν∇µ∇ν(ϕ

2)dλ

• Obeyed by minimally (ξ = 0) and NMC massive free scalar
fields for Rµν = 0

Effective ANEC

∫
γ

ρeffn dλ =

∫
γ

dλ
1− 8πξGN (1− 4ξ)ϕ2

(1− 8πGNξϕ2)2

(
dϕ

dλ

)2

• Non-negative for ξ < 0 and ξ > 1/4

• Negative for 0 < ξ < 1/4 and large field 8πξ(1−4ξ)GNϕ
2>1



Introduction Classical energy conditions Quantum null energy inequalities NMC as an effective field theory Conclusion

Einstein and Jordan frames

• Transform the action of a non-minimally coupled scalar field
(Jordan frame, JF) into the minimally coupled one (Einstein
frame, EF) by a conformal transformation g̃µν = Ω2gµν and
field redefinition ϕ̃ = F (ϕ).
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Einstein and Jordan frames

• Transform the action of a non-minimally coupled scalar field
(Jordan frame, JF) into the minimally coupled one (Einstein
frame, EF) by a conformal transformation g̃µν = Ω2gµν and
field redefinition ϕ̃ = F (ϕ).

• The minimally coupled action is

S =

∫
dnx

√
−g̃

[
R̃

16πG
+

1

2
(∇̃ϕ̃)2 − Ṽ (ϕ̃)

]
, with

Ω = (1− 8πGξϕ2)1/(n−2)

Ṽ (ϕ̃) = Ω−n
(

Λ

8πGN
+ V (ϕ)

)
, where ϕ = F−1(ϕ̃)
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Einstein and Jordan frames

• The stress tensor in the Einstein frame

Tµν = (∇̃µϕ̃)(∇̃ν ϕ̃)−
1

2
g̃µν(2Ṽ (ϕ̃)− (∇̃ϕ̃)2)

with null energy
ρ̃n = (ℓµ∇̃µϕ̃)(ℓ

ν∇̃ν ϕ̃)

• NEC is obeyed in the EF but not in the JF.

• The two frames are not equivalent in terms of the classical EC.
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Einstein and Jordan frames

• The stress tensor in the Einstein frame

Tµν = (∇̃µϕ̃)(∇̃ν ϕ̃)−
1

2
g̃µν(2Ṽ (ϕ̃)− (∇̃ϕ̃)2)

with null energy
ρ̃n = (ℓµ∇̃µϕ̃)(ℓ

ν∇̃ν ϕ̃)

• NEC is obeyed in the EF but not in the JF.

• The two frames are not equivalent in terms of the classical EC.
• Physically relevant question: Can NMC lead to exotic
spacetime geometries?

– Transversable wormholes require ANEC violation. Only
possible for large field values.Unphysical for NMC as EFT.

• JF and EF can be considered equivalent in this sense.
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Null QEIs for minimal coupling

We would like to prove a QEIs over a null geodesic.∫
dλ⟨: Tµν : ℓµℓν⟩ωf2(λ) ≥ −A

∫
dλf ′(λ)2

[Fewster, Roman, 2002]: The null energy averaged over a null
geodesic can become arbitrarily negative.
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Null QEIs for minimal coupling

We would like to prove a QEIs over a null geodesic.∫
dλ⟨: Tµν : ℓµℓν⟩ωf2(λ) ≥ −A

∫
dλf ′(λ)2

[Fewster, Roman, 2002]: The null energy averaged over a null
geodesic can become arbitrarily negative.
Idea Introduce an ultraviolet cutoff ℓUV which restricts the
three-momenta

Smeared null energy condition (SNEC)

• SNEC for the minimally coupled scalar field in 4d Minkowski
spacetime [Freivogel, Krommydas, 2018]∫

dλ⟨: Tµν : ℓµℓν⟩ωf2(λ) ≥ − 4B

ℓ2UV
||f ′||2
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Null QEIs for minimal coupling

Double smeared null energy condition (DSNEC)

• Smear over two null directions x±: test function supported on
δ±, [ Fliss, Freivogel, Kontou, 2021].

• DSNEC for minimally coupled scalar field∫
d2x±f2(x±)⟨T−−⟩ω ≥ − N

(δ+)n/2−1(δ−)n/2+1
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DSNEC for non-minimal coupling

• Bound for a massless scalar field in n-dimensional Minkowski
spacetime.

∫
d2x±f(x±)2⟨:T−−:⟩ψ≥ −Pn

(∫
dx+(f

(n/2)
+ (x+))2

)n−2
2n

(∫
dx−(f

(n/2)
− (x−))2

)n+2
2n

−|ξ|
∫

d2x±⟨: ϕ2 :⟩ψ∂2
−(f(x

±)2)
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DSNEC for non-minimal coupling

• Bound for a massless scalar field in n-dimensional Minkowski
spacetime.

∫
d2x±f(x±)2⟨:T−−:⟩ψ≥ −Pn

(∫
dx+(f

(n/2)
+ (x+))2

)n−2
2n

(∫
dx−(f

(n/2)
− (x−))2

)n+2
2n

−|ξ|ϕ2
max

∫
d2x±∂2

−(f(x
±)2)

• ϕmax is a finite constant such that |⟨: ϕ2 :⟩ψ| ≤ ϕ2
max

• State-dependent QEI

• Bound for general ξ

• Violation of the classical NEC results in state-dependent
bound
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DSNEC for non-minimal coupling

• ANEC from DSNEC: Take the limit δ+ → 0 and δ− → ∞
while δ+δ− ≡ α2 fixed∫ ∞

−∞
dx−⟨T−−(x

−)⟩ω ≥ 0
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DSNEC for non-minimal coupling

• ANEC from DSNEC: Take the limit δ+ → 0 and δ− → ∞
while δ+δ− ≡ α2 fixed∫ ∞

−∞
dx−⟨T−−(x

−)⟩ω ≥ 0

• SNEC from DSNEC: We impose δ+ → 0 while δ+δ− → ℓ2UV∫
dx−f−(x

−)2⟨T−−⟩ψ≥− pn

ℓn−2
UV

∫
dx−(∂−f(x

−))2−|ξ|ϕ̃2
max

ℓn−2
UV

∫
dx−∣∣(∂2

−(f(x
−)2))

∣∣
• Application to prove singularity and area theorems with NMC
theory, [Freivogel, Kontou, Krommydas, 2022], [Kontou, Sacchi, 2023]
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The Einstein frame

• Reminder: classically, the Einstein frame stress tensor is

T̃ classical
µν = (∇̃µϕ̃)(∇̃ν ϕ̃)−

1

2
g̃µν(2Ṽ (ϕ̃) + (∇̃ϕ̃)2)

with an effective potential

Ṽ (ϕ̃) =
(
1− 8πGN ξ ϕ2) n

2−n

(
Λ

8πGN
+ V (ϕ)

)
, ϕ = F−1(ϕ̃)
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The Einstein frame

• Reminder: classically, the Einstein frame stress tensor is

T̃ classical
µν = (∇̃µϕ̃)(∇̃ν ϕ̃)−

1

2
g̃µν(2Ṽ (ϕ̃) + (∇̃ϕ̃)2)

with an effective potential

Ṽ (ϕ̃) =
(
1− 8πGN ξ ϕ2) n

2−n

(
Λ

8πGN
+ V (ϕ)

)
, ϕ = F−1(ϕ̃)

• For small free scalar field ϕ, we do a power series expansion

ϕ̃ = ϕ

(
1 +

1

6

(
1 +

ξ

ξc

)
(8πGNξ ϕ2) + . . .

)
leading to an effective potential, for n=4

Ṽ (ϕ̃)=
Λ

8πGN
+
1

2

(
m2 + 4ξΛ

)
ϕ̃2+

1

6

(
m2

(
5− ξ

ξc

)
+2Λξ

(
7−2

ξ

ξc

))
(8πGNξ)ϕ̃4+. . .



Introduction Classical energy conditions Quantum null energy inequalities NMC as an effective field theory Conclusion

The Einstein frame

Perturbative expansion in 8πGNξϕ̃
2

• Massive theory with quartic interaction λ
4! ϕ̃

4:

m2
eff = m2 + 4ξΛ

λ = 4

(
m2

(
5− ξ

ξc

)
+ 2Λξ

(
7− 2

ξ

ξc

))
(8πGNξ)
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The Einstein frame

Perturbative expansion in 8πGNξϕ̃
2

• Massive theory with quartic interaction λ
4! ϕ̃

4:

m2
eff = m2 + 4ξΛ

λ = 4

(
m2

(
5− ξ

ξc

)
+ 2Λξ

(
7− 2

ξ

ξc

))
(8πGNξ)

• [Bostelmann, Cadamuro, Fewster, 2013], [Kontou, Sanders, 2020] :
Bosonic free theories that obey classcial EC→ QEI with
state-independent bound

– Classical theory in Einstein frame obeys the NEC, but it is
self-interacting. Not state-independent QEI expected
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The Einstein frame. Quantum corrections
Euclidean path integral of matter coupled to gravity

Zgrav+matter =

∫
DgµνDϕ e−Iξ[ϕ,g,V ]

where

Iξ[ϕ, g, V ] =

∫
dnx

√
g

(
−R− 2Λ

16πGN
+

1

2
(∇ϕ)2 +

1

2
m2ϕ2 +

ξ

2
Rϕ2 + V (ϕ)

)
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The Einstein frame. Quantum corrections
Euclidean path integral of matter coupled to gravity

Zgrav+matter =

∫
DgµνDϕ e−Iξ[ϕ,g,V ]

where

Iξ[ϕ, g, V ] =

∫
dnx

√
g

(
−R− 2Λ

16πGN
+

1

2
(∇ϕ)2 +

1

2
m2ϕ2 +

ξ

2
Rϕ2 + V (ϕ)

)
• Change of path-integral variables (gµν , ϕ) → (g̃µν , ϕ̃), such

that (ξ → ξ̃ = 0) and a new Ṽ :

Zgrav+matter=

∫
Dg̃µνDϕ̃ e−I0[ϕ̃,g̃,Ṽ ]+log J[ϕ̃,g̃] where J [ϕ̃, g̃] = det

δgµν
δg̃µν

det
δϕ

δϕ̃

• In general, we expect J to introduce all possible irrelevant

couplings, controlled by M−1
cutoff∼ϕ

2/(2−n)
max (dim. analysis).

• By assuming field values bounded by |8πGNξϕ
2| ≪ 1, we get

EFT that allows mappings from JF to EF, with modified Ṽ (ϕ̃)
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Conclusion

Can NMC theories allow exotic physics?

• Classically, NMC fields can violate the NEC. A transformation
to EF leads to a MC theory where NEC is obeyed.

• The ANEC -the relevant EC to allow exotic spacetimes- is
only violated if unbounded field values are allowed.

• For the quantized theory, DSNEC admits a lower bound
dependent on the cutoff, i.e. state-dependent lower bound.

• We have proved ANEC from DSNEC

• Transformation to EF leads to self-interacting fields, i.e.
state-dependent bounds for QEIs.

• The EFT remains valid when the irrelevant interactions are
suppressed by M−1

cutoff.
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Thank you for your attention!
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