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Introduction Localisation Outlook

Fermionic PDE

Let G(H) ⊂ A(H) be a topological Grassmann algebra embedded in the
CAR algebra generated by a Hilbert space H, ω state on A(H)

Singular (Bosonic)-Fermionic PDE: Solutions sought in space
D ′(Rd ; G(H))

∂tφ = (∆ − m2)φ− g ⟨ῡ, υ⟩R2 − λφ3 + ξ

∂tυ = ( /∇ − M)υ − gφυ + ψ

∂t ῡ = (− /∇ − M)ῡ − gφῡ + ψ̄ .

ξ Bosonic white noise (singular forcing term), think ξ ∈ C−d/2−ε(Rd)
ψ, ψ̄ ∈ C−d/2(Rd ; G) ⊂ D ′(Rd ; G) Fermionic white noise (singular forcing
term)

ω(ψ̄(x)ψ(y)) = δ(x − y)

Multiplication of Distributions =⇒ Renormalisation
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Introduction Localisation Outlook

Fermionic PDE

Singular PDEs solved by running Picard iteration, defining singular
products by hand

In Higgs-Yukawa model define

:=
(
∂t − /∇ + M

)−1
ψ , :=

(
∂t + /∇ + M

)−1
ψ̄

In (2 + 1)D, the product
〈

(x), (x)
〉
R2 is ill-defined

However,

(x) := :
〈

(x), (x)
〉
R2 : :=

〈
(x), (x)

〉
R2 − ω

(〈
(x), (x)

〉
R2

)
is a well-defined unbounded(!) operator-valued distributions.

How to solve equation without norm?
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Introduction Localisation Outlook

Points?

Same problem in Bosonic case. Solution: Work Pointwise!

Instead of topologising M(Σ; Cα(Rd)) ∼ Cα(Rd ; M(Σ)) work at each
point p ∈ Σ and solve problem in Cα(Rd)

Clear what points are when target C∗-algebra is commutative (Gel’fand
Isomorphism)

Algebraic Geometry: Points are (finite dimensional) irreducible
representations of your algebra

4 / 12
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Introduction Localisation Outlook

CAR Points?

Does it work for Grassmann/CAR algebra?

No!

Infinite dimensional CAR algebra does not admit finite dimensional reps!

If π : A(H) ! B(Cn) rep, a(f ) ∈ ker(π), f ̸= 0

∥f ∥2 = π([a(f )†, a(f )]+) =
[
π(a(f ))†, π(a(f ))

]
+

= 0

Have to extend the CAR algebra!
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Introduction Localisation Outlook

Extended CAR Algebra

Construction based on ideas from [DV75].

Define a free (algebraic) ∗-algebra Â(H) over Hilbert space H, i.e. freely
generated by {

α(f ), α(f )† ∣∣ f ∈ H
}

subject to (anti)-linear and ∗-relations.

Universal Property: ∀ ∗-algebra M ∀π̂ : H ! M linear ∃!π : Â(H) ! M
∗-algebra morphism extension
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Introduction Localisation Outlook

Extended CAR Algebra

Define
Gr(H) = {b

∣∣ b ⊂ H subspace, dim(b) < ∞} .

Let Pb : H ! b projection. Define πb : Â(H) ! A(b) via

πb(α(f )†) = a(Pbf )† , πb(α(f )) = a(Pbf )

A(b) is finite dimensional
Define

A(H) := Â(H)
/ ⋂

b∈Gr(H)

ker πb

with seminorms
∥A∥n := sup

b∈Gr(H)
dim(b)⩽n

∥πb(A)∥
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Extended CAR Algebra

The final object is a locally C∗-algebra, the Extended CAR Algebra,

A (H) := A(H)
(∥•∥n)n

It contains a C∗-algebra

A∞(H) :=
{

A ∈ A (H)
∣∣ sup

n∈N
∥A∥n < ∞

}
with surjective morphism ϝ : A∞(H) ! A(H).

Under certain conditions one can extend ϝ to certain unbounded elements
of A (H) to be unbounded operators associated with a von Neumann
completion of A(H).
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Introduction Localisation Outlook

Solving the Equation

Renormalised products appearing in the Stochastic Quantisation equations
(of superrenormalisable theories) are always contained in A (H),
correspond to unbounded operators affiliated with (A(H), ω).

Equation can be lifted from being näıvely A(H)-valued to A (H).

Solving equation in A (H) equivalent to solving equation in
An(H) := A (H)/ ker ∥ • ∥n

For each n ∈ N obtain maximal local existence time Tn. If
infn Tn = T > 0, solution exists in A (H).
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Solving equation in A (H) equivalent to solving equation in
An(H) := A (H)/ ker ∥ • ∥n

For each n ∈ N obtain maximal local existence time Tn. If
infn Tn = T > 0, solution exists in A (H).

9 / 12



Introduction Localisation Outlook

Open Problems

Find method to prove global in time existence, Pauli Principle?

Find robust methods to show correspondence with unbounded operators
affiliated to original CAR algebra, Non-Commutative Lp-Spaces?

Use with more models
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Thank You!
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