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is a well-defined unbounded(!) operator-valued distributions.

m How to solve equation without norm?
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Same problem in Bosonic case. Solution: Work Pointwise!

Instead of topologising M(X; C*(R?)) ~ C*(R?; M(X)) work at each
point p € ¥ and solve problem in C*(R?)

Clear what points are when target C*-algebra is commutative (Gel'fand

Isomorphism)

Algebraic Geometry: Points are (finite dimensional) irreducible

representations of your algebra
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m Construction based on ideas from [DV75].
m Define a free (algebraic) *-algebra 5[(53) over Hilbert space §, i.e. freely
generated by
{a(f),a(f)'| f € 0}
subject to (anti)-linear and *-relations.

m Universal Property: V *-algebra M V7: $§ — M linear 3l7: QAl(ﬁ) - M

*-algebra morphism extension
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Gr(9) = {b| b C $ subspace, dim(b) < oo} .

m Let Py: $ — b projection. Define mp: 5((.6) — A(b) via
ms(a(f)') = a(Pof)',  me(a(f)) = a(Psf)

m A(b) is finite dimensional
m Define
A(H) = A()/ ﬂ ker 7p
bEGH(S)

with seminorms
[Alln == sup ) 75 (A)|

beGr(H
dim(b)<n
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Extended CAR Algebra

m The final object is a locally C*-algebra, the Extended CAR Algebra,
%(ﬁ) Q[(YJ) (Il+1ln)
m |t contains a C*-algebra

Ao (H) = {A € A (9) | s:g IA]ln < oo}

with surjective morphism f: 2 (9) — A(H).
m Under certain conditions one can extend f to certain unbounded elements
of 27($)) to be unbounded operators associated with a von Neumann

completion of A($).
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Solving the Equation

m Renormalised products appearing in the Stochastic Quantisation equations
(of superrenormalisable theories) are always contained in 27($)),

correspond to unbounded operators affiliated with (A($), w).
m Equation can be lifted from being naively A($)-valued to <7($).
m Solving equation in /() equivalent to solving equation in
n(9) = (H)/ ker
m For each n € N obtain maximal local existence time T,. If
inf, T, = T > 0, solution exists in <7(£).

n

9/12



Outlook
[ lele}

Open Problems

m Find method to prove global in time existence, Pauli Principle?

10/12



Outlook
[ lele}

Open Problems

m Find method to prove global in time existence, Pauli Principle?

m Find robust methods to show correspondence with unbounded operators

affiliated to original CAR algebra, Non-Commutative L”-Spaces?

10/12



Outlook
[ lele}

Open Problems

m Find method to prove global in time existence, Pauli Principle?

m Find robust methods to show correspondence with unbounded operators

affiliated to original CAR algebra, Non-Commutative L”-Spaces?

m Use with more models
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Thank You!
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