Localising Fermionic (S)PDEs

Martin Peev¹

Imperial College London

47th LQP Workshop 22 IX 2023

¹based on joint work with Ajay Chandra and Martin Hairer

Introduction ●O	Localisation 000000	Outlook 000
Fermionic PDE		

• Let $\mathcal{G}(\mathfrak{H}) \subset \mathcal{A}(\mathfrak{H})$ be a topological Grassmann algebra embedded in the CAR algebra generated by a Hilbert space \mathfrak{H}, ω state on $\mathcal{A}(\mathfrak{H})$

Localisation 000000	Outlook 000
	Localisation 000000

Let G(𝔅) ⊂ A(𝔅) be a topological Grassmann algebra embedded in the CAR algebra generated by a Hilbert space 𝔅, ω state on A(𝔅)
 Singular (Bosonic)-Fermionic PDE: Solutions sought in space D'(ℝ^d; G(𝔅))

$$\begin{split} \partial_t \varphi &= (\Delta - m^2) \varphi - g \langle \bar{v}, v \rangle_{\mathbb{R}^2} - \lambda \varphi^3 + \xi \\ \partial_t v &= (\nabla - M) v - g \varphi v + \psi \\ \partial_t \bar{v} &= (-\overline{\nabla} - M) \bar{v} - g \varphi \bar{v} + \bar{\psi} \; . \end{split}$$

Introduction ● O	Localisation 000000	Outlook 000

Let G(𝔅) ⊂ A(𝔅) be a topological Grassmann algebra embedded in the CAR algebra generated by a Hilbert space 𝔅, ω state on A(𝔅)
 Singular (Bosonic)-Fermionic PDE: Solutions sought in space D'(ℝ^d; G(𝔅))

$$\begin{aligned} \partial_t \varphi &= (\Delta - m^2) \varphi - g \langle \bar{v}, v \rangle_{\mathbb{R}^2} - \lambda \varphi^3 + \xi \\ \partial_t v &= (\nabla - M) v - g \varphi v + \psi \\ \partial_t \bar{v} &= (-\overline{\nabla} - M) \bar{v} - g \varphi \bar{v} + \bar{\psi} . \end{aligned}$$

• ξ Bosonic white noise (singular forcing term), think $\xi \in C^{-d/2-\varepsilon}(\mathbb{R}^d)$

Let G(𝔅) ⊂ A(𝔅) be a topological Grassmann algebra embedded in the CAR algebra generated by a Hilbert space 𝔅, ω state on A(𝔅)
 Singular (Bosonic)-Fermionic PDE: Solutions sought in space D'(ℝ^d; G(𝔅))

$$\begin{aligned} \partial_t \varphi &= (\Delta - m^2) \varphi - g \langle \bar{v}, v \rangle_{\mathbb{R}^2} - \lambda \varphi^3 + \xi \\ \partial_t v &= (\nabla - M) v - g \varphi v + \psi \\ \partial_t \bar{v} &= (-\overline{\nabla} - M) \bar{v} - g \varphi \bar{v} + \bar{\psi} . \end{aligned}$$

ξ Bosonic white noise (singular forcing term), think ξ ∈ C^{-d/2-ε}(ℝ^d)
 ψ, ψ̄ ∈ C^{-d/2}(ℝ^d; G) ⊂ D'(ℝ^d; G) Fermionic white noise (singular forcing term)

$$\omega(\bar{\psi}(x)\psi(y)) = \delta(x-y)$$

Let G(𝔅) ⊂ A(𝔅) be a topological Grassmann algebra embedded in the CAR algebra generated by a Hilbert space 𝔅, ω state on A(𝔅)
 Singular (Bosonic)-Fermionic PDE: Solutions sought in space D'(ℝ^d; G(𝔅))

$$\begin{aligned} \partial_t \varphi &= (\Delta - m^2) \varphi - g \langle \bar{v}, v \rangle_{\mathbb{R}^2} - \lambda \varphi^3 + \xi \\ \partial_t v &= (\nabla - M) v - g \varphi v + \psi \\ \partial_t \bar{v} &= (-\overline{\nabla} - M) \bar{v} - g \varphi \bar{v} + \bar{\psi} . \end{aligned}$$

ξ Bosonic white noise (singular forcing term), think ξ ∈ C^{-d/2-ε}(ℝ^d)
 ψ, ψ̄ ∈ C^{-d/2}(ℝ^d; G) ⊂ D'(ℝ^d; G) Fermionic white noise (singular forcing term)

$$\omega(\bar{\psi}(x)\psi(y)) = \delta(x-y)$$

• Multiplication of Distributions \implies Renormalisation

Introduction O●	Localisation 000000	Outlook 000
Fermionic PDE		

 Singular PDEs solved by running Picard iteration, defining singular products by hand

Introduction	Localisation	Outlook
C●	000000	000

- Singular PDEs solved by running Picard iteration, defining singular products by hand
- In Higgs-Yukawa model define

$$F := \left(\partial_t -
abla + M
ight)^{-1}\psi, \qquad F := \left(\partial_t + \overline{
abla} + M
ight)^{-1}\overline{\psi}.$$

Introduction	Localisation	Outlook
O●	000000	000

- Singular PDEs solved by running Picard iteration, defining singular products by hand
- In Higgs-Yukawa model define

$$\overline{\mathfrak{h}} := \left(\partial_t -
abla + M
ight)^{-1}\psi, \qquad \overline{\mathfrak{h}} := \left(\partial_t + \overline{
abla} + M
ight)^{-1}\overline{\psi}.$$

• In (2+1)D, the product $\langle f(x), f(x) \rangle_{\mathbb{R}^2}$ is ill-defined

Introduction	Localisation	Outlook
⊙●	000000	000

- Singular PDEs solved by running Picard iteration, defining singular products by hand
- In Higgs-Yukawa model define

$$\overline{\mathfrak{f}} := \left(\partial_t -
abla + M
ight)^{-1}\psi, \qquad \overline{\mathfrak{f}} := \left(\partial_t + \overline{
abla} + M
ight)^{-1}\overline{\psi}$$

• In (2+1)D, the product $\langle F(x), F(x) \rangle_{\mathbb{R}^2}$ is ill-defined

However,

$$\sqrt[q]{}^{\mathsf{q}}(\mathsf{x}) \coloneqq : \left\langle \sqrt[q]{}(\mathsf{x}), \sqrt[q]{}(\mathsf{x}) \right\rangle_{\mathbb{R}^2} : \coloneqq \left\langle \sqrt[q]{}(\mathsf{x}), \sqrt[q]{}(\mathsf{x}) \right\rangle_{\mathbb{R}^2} - \omega\left(\left\langle \sqrt[q]{}(\mathsf{x}), \sqrt[q]{}(\mathsf{x}) \right\rangle_{\mathbb{R}^2} \right)$$

is a well-defined unbounded(!) operator-valued distributions.

Introduction	Localisation	Outlook
⊙●	000000	000

- Singular PDEs solved by running Picard iteration, defining singular products by hand
- In Higgs-Yukawa model define

$$\overline{\mathfrak{f}} := \left(\partial_t -
abla + M
ight)^{-1}\psi, \qquad \overline{\mathfrak{f}} := \left(\partial_t + \overline{
abla} + M
ight)^{-1}\overline{\psi}$$

• In (2+1)D, the product $\langle F(x), F(x) \rangle_{\mathbb{R}^2}$ is ill-defined

However,

is a well-defined unbounded(!) operator-valued distributions.

How to solve equation without norm?

Introduction 00	Localisation ●00000	Outlook 000
Points?		
Same problem in Bosonic case.	Solution: Work Pointwise!	

Introduction OO	Localisation ●00000	Outlook 000
Points?		

- Same problem in Bosonic case. Solution: Work Pointwise!
- Instead of topologising $\mathcal{M}(\Sigma; \mathcal{C}^{\alpha}(\mathbb{R}^d)) \sim \mathcal{C}^{\alpha}(\mathbb{R}^d; \mathcal{M}(\Sigma))$ work at each point $p \in \Sigma$ and solve problem in $\mathcal{C}^{\alpha}(\mathbb{R}^d)$

Points?

- Same problem in Bosonic case. Solution: Work Pointwise!
- Instead of topologising $\mathcal{M}(\Sigma; \mathcal{C}^{\alpha}(\mathbb{R}^d)) \sim \mathcal{C}^{\alpha}(\mathbb{R}^d; \mathcal{M}(\Sigma))$ work at each point $p \in \Sigma$ and solve problem in $\mathcal{C}^{\alpha}(\mathbb{R}^d)$
- Clear what points are when target C*-algebra is commutative (Gel'fand Isomorphism)

Points?

- Same problem in Bosonic case. Solution: Work Pointwise!
- Instead of topologising *M*(Σ; C^α(ℝ^d)) ~ C^α(ℝ^d; *M*(Σ)) work at each point *p* ∈ Σ and solve problem in C^α(ℝ^d)
- Clear what points are when target C*-algebra is commutative (Gel'fand Isomorphism)
- Algebraic Geometry: Points are (finite dimensional) irreducible representations of your algebra

Introduction 00	Localisation O●0000	Outlook 000
CAR Points?		

Does it work for Grassmann/CAR algebra?

Introduction OO	Localisation C●OOOO	Outlook 000
CAR Points?		

Does it work for Grassmann/CAR algebra?

No!

Introduction OO	Localisation O●OOOO	Outlook 000
CAR Points?		

- Does it work for Grassmann/CAR algebra?
- No!
- Infinite dimensional CAR algebra does not admit finite dimensional reps!

Introduction	Localisation	Outlook
OO	○●○○○○	000

CAR Points?

- Does it work for Grassmann/CAR algebra?
- No!
- Infinite dimensional CAR algebra does not admit finite dimensional reps!

If
$$\pi \colon \mathcal{A}(\mathfrak{H}) \to \mathcal{B}(\mathbb{C}^n)$$
 rep, $a(f) \in \ker(\pi), \ f \neq 0$

$$\|f\|^2 = \pi([a(f)^{\dagger}, a(f)]_+) = [\pi(a(f))^{\dagger}, \pi(a(f))]_+ = 0$$

Introduction	Localisation	Outlook
OO	0●0000	000

CAR Points?

- Does it work for Grassmann/CAR algebra?
- No!
- Infinite dimensional CAR algebra does not admit finite dimensional reps!

If
$$\pi \colon \mathcal{A}(\mathfrak{H}) \to \mathcal{B}(\mathbb{C}^n)$$
 rep, $a(f) \in \ker(\pi), \ f \neq 0$

$$\|f\|^2 = \pi([a(f)^{\dagger}, a(f)]_+) = [\pi(a(f))^{\dagger}, \pi(a(f))]_+ = 0$$

Have to extend the CAR algebra!

In	ro	d			

Construction based on ideas from [DV75].

ntroduction	Localisation 000000	Outlook 000

- Construction based on ideas from [DV75].
- Define a free (algebraic) *-algebra $\widehat{\mathfrak{A}}(\mathfrak{H})$ over Hilbert space $\mathfrak{H},$ i.e. freely generated by

 $\left\{ \alpha(f), \alpha(f)^{\dagger} \mid f \in \mathfrak{H} \right\}$

subject to (anti)-linear and *-relations.

ntroduction	Localisation	Outlook
DO	000000	000

- Construction based on ideas from [DV75].
- Define a free (algebraic) *-algebra Â(β) over Hilbert space β, i.e. freely generated by

$$\left\{ \alpha(f), \alpha(f)^{\dagger} \mid f \in \mathfrak{H} \right\}$$

subject to (anti)-linear and *-relations.

Universal Property: ∀ *-algebra M ∀π̂: 𝔅 → M linear ∃!π: 𝔅(𝔅) → M
 *-algebra morphism extension

Introduction	Localisation	Outlook
OO	000●00	000

Define

$$\mathsf{Gr}(\mathfrak{H}) = \{ b \mid b \subset \mathfrak{H} \text{ subspace}, \mathsf{dim}(b) < \infty \} \;.$$

Introduction	Localisation	Outlook
OO	000●00	000

Define

$$\mathsf{Gr}(\mathfrak{H}) = \{ b \mid b \subset \mathfrak{H} \text{ subspace}, \mathsf{dim}(b) < \infty \} .$$

• Let $P_b \colon \mathfrak{H} o b$ projection. Define $\pi_b \colon \widehat{\mathfrak{A}}(\mathfrak{H}) o \mathcal{A}(b)$ via

$$\pi_b(\alpha(f)^{\dagger}) = a(P_b f)^{\dagger}, \qquad \pi_b(\alpha(f)) = a(P_b f)$$

Introduction	Localisation	Outlook
OO	○○○●○○	000

Define

$$\mathsf{Gr}(\mathfrak{H}) = \{ b \mid b \subset \mathfrak{H} \text{ subspace}, \mathsf{dim}(b) < \infty \} .$$

• Let $P_b \colon \mathfrak{H} o b$ projection. Define $\pi_b \colon \widehat{\mathfrak{A}}(\mathfrak{H}) o \mathcal{A}(b)$ via

$$\pi_b(\alpha(f)^{\dagger}) = a(P_b f)^{\dagger}, \qquad \pi_b(\alpha(f)) = a(P_b f)$$

• $\mathcal{A}(b)$ is finite dimensional

Introduction	Localisation	Outlook
OO	000●00	000

Define

$$\mathsf{Gr}(\mathfrak{H}) = \{b \ \middle| \ b \subset \mathfrak{H} ext{ subspace}, \mathsf{dim}(b) < \infty\}$$
 .

• Let $P_b \colon \mathfrak{H} \to b$ projection. Define $\pi_b \colon \widehat{\mathfrak{A}}(\mathfrak{H}) \to \mathcal{A}(b)$ via

$$\pi_b(\alpha(f)^{\dagger}) = a(P_b f)^{\dagger}, \qquad \pi_b(\alpha(f)) = a(P_b f)$$

• $\mathcal{A}(b)$ is finite dimensional

Define

$$\mathfrak{A}(\mathfrak{H}) \coloneqq \widehat{\mathfrak{A}}(\mathfrak{H}) \big/ igcap_{b \in \mathsf{Gr}(\mathfrak{H})} \ker \pi_b$$
ker π_b

with seminorms

$$\|A\|_n \coloneqq \sup_{\substack{b \in \operatorname{Gr}(\mathfrak{H}) \\ \dim(b) \leqslant n}} \|\pi_b(A)\|$$

Introduction OO	Localisation 000000	Outlook 000
Extended CAR Algebra		

• The final object is a locally C^* -algebra, the Extended CAR Algebra,

$$\mathscr{A}(\mathfrak{H})\coloneqq\overline{\mathfrak{A}(\mathfrak{H})}^{(\|ullet\|_n)_n}$$

Introduction	Localisation	Outlook
00	0000●0	000

• The final object is a locally C^* -algebra, the Extended CAR Algebra,

$$\mathscr{A}(\mathfrak{H})\coloneqq\overline{\mathfrak{A}(\mathfrak{H})}^{(\|ullet\|_n)_n}$$

■ It contains a C*-algebra

$$\mathfrak{A}_\infty(\mathfrak{H})\coloneqq \left\{A\in \mathscr{A}(\mathfrak{H})\,\big|\,\sup_{n\in\mathbb{N}}\|A\|_n<\infty
ight\}$$

with surjective morphism ${}_{{\sf F}}\colon {\mathfrak A}_\infty({\mathfrak H})\to {\mathcal A}({\mathfrak H}).$

Introduction	Localisation	Outlook
OO	0000●0	000

• The final object is a locally C^* -algebra, the Extended CAR Algebra,

$$\mathscr{A}(\mathfrak{H})\coloneqq\overline{\mathfrak{A}(\mathfrak{H})}^{(\|ullet\|_n)_n}$$

It contains a C*-algebra

$$\mathfrak{A}_\infty(\mathfrak{H})\coloneqq \left\{A\in\mathscr{A}(\mathfrak{H})\,\big|\,\sup_{n\in\mathbb{N}}\|A\|_n<\infty
ight\}$$

with surjective morphism $F \colon \mathfrak{A}_{\infty}(\mathfrak{H}) \to \mathcal{A}(\mathfrak{H}).$

Under certain conditions one can extend F to certain unbounded elements of A(S) to be unbounded operators associated with a von Neumann completion of A(S).

Renormalised products appearing in the Stochastic Quantisation equations (of superrenormalisable theories) are always contained in A(N), correspond to unbounded operators affiliated with (A(N), ω).

- Renormalised products appearing in the Stochastic Quantisation equations (of superrenormalisable theories) are always contained in A(S), correspond to unbounded operators affiliated with (A(S), ω).
- Equation can be lifted from being naïvely $\mathcal{A}(\mathfrak{H})$ -valued to $\mathscr{A}(\mathfrak{H})$.

- Renormalised products appearing in the Stochastic Quantisation equations (of superrenormalisable theories) are always contained in A(S), correspond to unbounded operators affiliated with (A(S), ω).
- Equation can be lifted from being naïvely $\mathcal{A}(\mathfrak{H})$ -valued to $\mathscr{A}(\mathfrak{H})$.
- Solving equation in $\mathscr{A}(\mathfrak{H})$ equivalent to solving equation in $\mathscr{A}_n(\mathfrak{H}) := \mathscr{A}(\mathfrak{H}) / \ker \| \cdot \|_n$

- Renormalised products appearing in the Stochastic Quantisation equations (of superrenormalisable theories) are always contained in A(M), correspond to unbounded operators affiliated with (A(M), ω).
- Equation can be lifted from being naïvely $\mathcal{A}(\mathfrak{H})$ -valued to $\mathscr{A}(\mathfrak{H})$.
- Solving equation in $\mathscr{A}(\mathfrak{H})$ equivalent to solving equation in $\mathscr{A}_n(\mathfrak{H}) := \mathscr{A}(\mathfrak{H}) / \ker \| \cdot \|_n$
- For each n ∈ N obtain maximal local existence time T_n. If inf_n T_n = T > 0, solution exists in 𝔄(𝔅).

Introduction OO	Localisation 000000	Outlook ●00
Open Problems		

Find method to prove global in time existence, Pauli Principle?

Introduction 00	Localisation 000000	Outlook 000
Open Problems		

- Find method to prove global in time existence, Pauli Principle?
- Find robust methods to show correspondence with unbounded operators affiliated to original CAR algebra, Non-Commutative *L^p*-Spaces?

ntroduction	Localisation	Outlook
DO	000000	●00

Open Problems

- Find method to prove global in time existence, Pauli Principle?
- Find robust methods to show correspondence with unbounded operators affiliated to original CAR algebra, Non-Commutative *L^p*-Spaces?
- Use with more models

Thank You!

Introduction Localisation 00 000000	Localisation 000000	Introduction OO
---	------------------------	--------------------

References

M. Dubois-Violette.

A generalization of the classical moment problem on $\ensuremath{^*}\xspace$ -algebras with applications to relativistic quantum theory. I.

Comm. Math. Phys. 43, no. 3, (1975), 225-254.

Outlook