Localising Fermionic (S)PDEs

Martin Peev ${ }^{1}$
Imperial College London
$47^{\text {th }}$ LQP Workshop
22 IX 2023

[^0]
Fermionic PDE

- Let $\mathcal{G}(\mathfrak{H}) \subset \mathcal{A}(\mathfrak{H})$ be a topological Grassmann algebra embedded in the CAR algebra generated by a Hilbert space \mathfrak{H}, ω state on $\mathcal{A}(\mathfrak{H})$

Fermionic PDE

- Let $\mathcal{G}(\mathfrak{H}) \subset \mathcal{A}(\mathfrak{H})$ be a topological Grassmann algebra embedded in the CAR algebra generated by a Hilbert space \mathfrak{H}, ω state on $\mathcal{A}(\mathfrak{H})$
- Singular (Bosonic)-Fermionic PDE: Solutions sought in space $\mathscr{D}^{\prime}\left(\mathbb{R}^{d} ; \mathcal{G}(\mathfrak{H})\right)$

$$
\begin{aligned}
& \partial_{t} \varphi=\left(\Delta-m^{2}\right) \varphi-g\langle\bar{v}, v\rangle_{\mathbb{R}^{2}}-\lambda \varphi^{3}+\xi \\
& \partial_{t} v=(\not \nabla-M) v-g \varphi v+\psi \\
& \partial_{t} \bar{v}=(-\bar{\not}-M) \bar{v}-g \varphi \bar{v}+\bar{\psi}
\end{aligned}
$$

Fermionic PDE

- Let $\mathcal{G}(\mathfrak{H}) \subset \mathcal{A}(\mathfrak{H})$ be a topological Grassmann algebra embedded in the CAR algebra generated by a Hilbert space \mathfrak{H}, ω state on $\mathcal{A}(\mathfrak{H})$
- Singular (Bosonic)-Fermionic PDE: Solutions sought in space $\mathscr{D}^{\prime}\left(\mathbb{R}^{d} ; \mathcal{G}(\mathfrak{H})\right)$

$$
\begin{aligned}
& \partial_{t} \varphi=\left(\Delta-m^{2}\right) \varphi-g\langle\bar{v}, v\rangle_{\mathbb{R}^{2}}-\lambda \varphi^{3}+\xi \\
& \partial_{t} v=(\not \nabla-M) v-g \varphi v+\psi \\
& \partial_{t} \bar{v}=(-\bar{\not}-M) \bar{v}-g \varphi \bar{v}+\bar{\psi}
\end{aligned}
$$

- ξ Bosonic white noise (singular forcing term), think $\xi \in \mathcal{C}^{-d / 2-\varepsilon}\left(\mathbb{R}^{d}\right)$

Fermionic PDE

- Let $\mathcal{G}(\mathfrak{H}) \subset \mathcal{A}(\mathfrak{H})$ be a topological Grassmann algebra embedded in the CAR algebra generated by a Hilbert space \mathfrak{H}, ω state on $\mathcal{A}(\mathfrak{H})$
- Singular (Bosonic)-Fermionic PDE: Solutions sought in space $\mathscr{D}^{\prime}\left(\mathbb{R}^{d} ; \mathcal{G}(\mathfrak{H})\right)$

$$
\begin{aligned}
& \partial_{t} \varphi=\left(\Delta-m^{2}\right) \varphi-g\langle\bar{v}, v\rangle_{\mathbb{R}^{2}}-\lambda \varphi^{3}+\xi \\
& \partial_{t} v=(\not \nabla-M) v-g \varphi v+\psi \\
& \partial_{t} \bar{v}=(-\bar{\not}-M) \bar{v}-g \varphi \bar{v}+\bar{\psi}
\end{aligned}
$$

- ξ Bosonic white noise (singular forcing term), think $\xi \in \mathcal{C}^{-d / 2-\varepsilon}\left(\mathbb{R}^{d}\right)$
- $\psi, \bar{\psi} \in \mathcal{C}^{-d / 2}\left(\mathbb{R}^{d} ; \mathcal{G}\right) \subset \mathscr{D}^{\prime}\left(\mathbb{R}^{d} ; \mathcal{G}\right)$ Fermionic white noise (singular forcing term)

$$
\omega(\bar{\psi}(x) \psi(y))=\delta(x-y)
$$

Fermionic PDE

- Let $\mathcal{G}(\mathfrak{H}) \subset \mathcal{A}(\mathfrak{H})$ be a topological Grassmann algebra embedded in the CAR algebra generated by a Hilbert space \mathfrak{H}, ω state on $\mathcal{A}(\mathfrak{H})$
- Singular (Bosonic)-Fermionic PDE: Solutions sought in space $\mathscr{D}^{\prime}\left(\mathbb{R}^{d} ; \mathcal{G}(\mathfrak{H})\right)$

$$
\begin{aligned}
& \partial_{t} \varphi=\left(\Delta-m^{2}\right) \varphi-g\langle\bar{v}, v\rangle_{\mathbb{R}^{2}}-\lambda \varphi^{3}+\xi \\
& \partial_{t} v=(\not \nabla-M) v-g \varphi v+\psi \\
& \partial_{t} \bar{v}=(-\overline{\not \subset}-M) \bar{v}-g \varphi \bar{v}+\bar{\psi}
\end{aligned}
$$

- ξ Bosonic white noise (singular forcing term), think $\xi \in \mathcal{C}^{-d / 2-\varepsilon}\left(\mathbb{R}^{d}\right)$
- $\psi, \bar{\psi} \in \mathcal{C}^{-d / 2}\left(\mathbb{R}^{d} ; \mathcal{G}\right) \subset \mathscr{D}^{\prime}\left(\mathbb{R}^{d} ; \mathcal{G}\right)$ Fermionic white noise (singular forcing term)

$$
\omega(\bar{\psi}(x) \psi(y))=\delta(x-y)
$$

■ Multiplication of Distributions \Longrightarrow Renormalisation

Fermionic PDE

- Singular PDEs solved by running Picard iteration, defining singular products by hand

Fermionic PDE

- Singular PDEs solved by running Picard iteration, defining singular products by hand
- In Higgs-Yukawa model define

$$
\boldsymbol{q}:=\left(\partial_{t}-\not \nabla+M\right)^{-1} \psi, \quad \text { 甲 }:=\left(\partial_{t}+\bar{\nabla}+M\right)^{-1} \bar{\psi}
$$

Fermionic PDE

- Singular PDEs solved by running Picard iteration, defining singular products by hand
- In Higgs-Yukawa model define

$$
\boldsymbol{F}:=\left(\partial_{t}-\not \nabla+M\right)^{-1} \psi, \quad \text { 甲 }:=\left(\partial_{t}+\bar{\nabla}+M\right)^{-1} \bar{\psi}
$$

- In $(2+1) \mathrm{D}$, the product $\left\langle{ }^{9}(x),{ }^{\boldsymbol{q}}(x)\right\rangle_{\mathbb{R}^{2}}$ is ill-defined

Fermionic PDE

- Singular PDEs solved by running Picard iteration, defining singular products by hand
- In Higgs-Yukawa model define

$$
\boldsymbol{F}:=\left(\partial_{t}-\not \nabla+M\right)^{-1} \psi, \quad \text { 甲 }:=\left(\partial_{t}+\bar{\nabla}+M\right)^{-1} \bar{\psi}
$$

- In $(2+1) \mathrm{D}$, the product $\left\langle{ }^{f}(x),{ }^{\boldsymbol{P}}(x)\right\rangle_{\mathbb{R}^{2}}$ is ill-defined
- However,
is a well-defined unbounded(!) operator-valued distributions.

Fermionic PDE

- Singular PDEs solved by running Picard iteration, defining singular products by hand
- In Higgs-Yukawa model define

$$
\boldsymbol{F}:=\left(\partial_{t}-\not \nabla+M\right)^{-1} \psi, \quad \text { 甲 }:=\left(\partial_{t}+\bar{\nabla}+M\right)^{-1} \bar{\psi}
$$

- In $(2+1) \mathrm{D}$, the product $\left\langle{ }^{f}(x),{ }^{\boldsymbol{P}}(x)\right\rangle_{\mathbb{R}^{2}}$ is ill-defined
- However,
is a well-defined unbounded(!) operator-valued distributions.
- How to solve equation without norm?

Points?

- Same problem in Bosonic case. Solution: Work Pointwise!

Points?

- Same problem in Bosonic case. Solution: Work Pointwise!
- Instead of topologising $\mathcal{M}\left(\Sigma ; \mathcal{C}^{\alpha}\left(\mathbb{R}^{d}\right)\right) \sim \mathcal{C}^{\alpha}\left(\mathbb{R}^{d} ; \mathcal{M}(\Sigma)\right)$ work at each point $p \in \Sigma$ and solve problem in $\mathcal{C}^{\alpha}\left(\mathbb{R}^{d}\right)$

Points?

- Same problem in Bosonic case. Solution: Work Pointwise!
- Instead of topologising $\mathcal{M}\left(\Sigma ; \mathcal{C}^{\alpha}\left(\mathbb{R}^{d}\right)\right) \sim \mathcal{C}^{\alpha}\left(\mathbb{R}^{d} ; \mathcal{M}(\Sigma)\right)$ work at each point $p \in \Sigma$ and solve problem in $\mathcal{C}^{\alpha}\left(\mathbb{R}^{d}\right)$
- Clear what points are when target C^{*}-algebra is commutative (Gel'fand Isomorphism)

Points?

- Same problem in Bosonic case. Solution: Work Pointwise!
- Instead of topologising $\mathcal{M}\left(\Sigma ; \mathcal{C}^{\alpha}\left(\mathbb{R}^{d}\right)\right) \sim \mathcal{C}^{\alpha}\left(\mathbb{R}^{d} ; \mathcal{M}(\Sigma)\right)$ work at each point $p \in \Sigma$ and solve problem in $\mathcal{C}^{\alpha}\left(\mathbb{R}^{d}\right)$
- Clear what points are when target C^{*}-algebra is commutative (Gel'fand Isomorphism)
- Algebraic Geometry: Points are (finite dimensional) irreducible representations of your algebra

CAR Points?

■ Does it work for Grassmann/CAR algebra?

CAR Points?

- Does it work for Grassmann/CAR algebra?
- No!

CAR Points?

- Does it work for Grassmann/CAR algebra?
- No!

■ Infinite dimensional CAR algebra does not admit finite dimensional reps!

CAR Points?

- Does it work for Grassmann/CAR algebra?
- No!
- Infinite dimensional CAR algebra does not admit finite dimensional reps!
- If $\pi: \mathcal{A}(\mathfrak{H}) \rightarrow \mathcal{B}\left(\mathbb{C}^{n}\right)$ rep, $a(f) \in \operatorname{ker}(\pi), f \neq 0$

$$
\|f\|^{2}=\pi\left(\left[a(f)^{\dagger}, a(f)\right]_{+}\right)=\left[\pi(a(f))^{\dagger}, \pi(a(f))\right]_{+}=0
$$

CAR Points?

- Does it work for Grassmann/CAR algebra?
- No!
- Infinite dimensional CAR algebra does not admit finite dimensional reps!
- If $\pi: \mathcal{A}(\mathfrak{H}) \rightarrow \mathcal{B}\left(\mathbb{C}^{n}\right)$ rep, $a(f) \in \operatorname{ker}(\pi), f \neq 0$

$$
\|f\|^{2}=\pi\left(\left[a(f)^{\dagger}, a(f)\right]_{+}\right)=\left[\pi(a(f))^{\dagger}, \pi(a(f))\right]_{+}=0
$$

- Have to extend the CAR algebra!

Extended CAR Algebra

- Construction based on ideas from [DV75].

Extended CAR Algebra

- Construction based on ideas from [DV75].
- Define a free (algebraic) *-algebra $\widehat{\mathfrak{A}}(\mathfrak{H})$ over Hilbert space \mathfrak{H}, i.e. freely generated by

$$
\left\{\alpha(f), \alpha(f)^{\dagger} \mid f \in \mathfrak{H}\right\}
$$

subject to (anti)-linear and *-relations.

Extended CAR Algebra

- Construction based on ideas from [DV75].
- Define a free (algebraic) *-algebra $\widehat{\mathfrak{A}}(\mathfrak{H})$ over Hilbert space \mathfrak{H}, i.e. freely generated by

$$
\left\{\alpha(f), \alpha(f)^{\dagger} \mid f \in \mathfrak{H}\right\}
$$

subject to (anti)-linear and $*$-relations.

- Universal Property: \forall *-algebra $M \forall \widehat{\pi}: \mathfrak{H} \rightarrow M$ linear $\exists!\pi: \widehat{\mathfrak{A}}(\mathfrak{H}) \rightarrow M$ *-algebra morphism extension

Extended CAR Algebra

- Define

$$
\operatorname{Gr}(\mathfrak{H})=\{b \mid b \subset \mathfrak{H} \text { subspace, } \operatorname{dim}(b)<\infty\} .
$$

Extended CAR Algebra

■ Define

$$
\operatorname{Gr}(\mathfrak{H})=\{b \mid b \subset \mathfrak{H} \text { subspace, } \operatorname{dim}(b)<\infty\}
$$

- Let $P_{b}: \mathfrak{H} \rightarrow b$ projection. Define $\pi_{b}: \widehat{\mathfrak{A}}(\mathfrak{H}) \rightarrow \mathcal{A}(b)$ via

$$
\pi_{b}\left(\alpha(f)^{\dagger}\right)=a\left(P_{b} f\right)^{\dagger}, \quad \pi_{b}(\alpha(f))=a\left(P_{b} f\right)
$$

Extended CAR Algebra

■ Define

$$
\operatorname{Gr}(\mathfrak{H})=\{b \mid b \subset \mathfrak{H} \text { subspace, } \operatorname{dim}(b)<\infty\}
$$

- Let $P_{b}: \mathfrak{H} \rightarrow b$ projection. Define $\pi_{b}: \widehat{\mathfrak{A}}(\mathfrak{H}) \rightarrow \mathcal{A}(b)$ via

$$
\pi_{b}\left(\alpha(f)^{\dagger}\right)=a\left(P_{b} f\right)^{\dagger}, \quad \pi_{b}(\alpha(f))=a\left(P_{b} f\right)
$$

- $\mathcal{A}(b)$ is finite dimensional

Extended CAR Algebra

- Define

$$
\operatorname{Gr}(\mathfrak{H})=\{b \mid b \subset \mathfrak{H} \text { subspace, } \operatorname{dim}(b)<\infty\}
$$

■ Let $P_{b}: \mathfrak{H} \rightarrow b$ projection. Define $\pi_{b}: \widehat{\mathfrak{A}}(\mathfrak{H}) \rightarrow \mathcal{A}(b)$ via

$$
\pi_{b}\left(\alpha(f)^{\dagger}\right)=a\left(P_{b} f\right)^{\dagger}, \quad \pi_{b}(\alpha(f))=a\left(P_{b} f\right)
$$

- $\mathcal{A}(b)$ is finite dimensional
- Define

$$
\mathfrak{A}(\mathfrak{H}):=\widehat{\mathfrak{A}}(\mathfrak{H}) / \bigcap_{b \in \operatorname{Gr}(\mathfrak{H})} \operatorname{ker} \pi_{b}
$$

with seminorms

$$
\|A\|_{n}:=\sup _{\substack{b \in \operatorname{Gr}(\mathfrak{H}) \\ \operatorname{dim}(b) \leqslant n}}\left\|\pi_{b}(A)\right\|
$$

Extended CAR Algebra

- The final object is a locally C^{*}-algebra, the Extended CAR Algebra,

$$
\mathscr{A}(\mathfrak{H}):=\overline{\mathfrak{A}(\mathfrak{H})}^{\left(\|\cdot\|_{n}\right)_{n}}
$$

Extended CAR Algebra

- The final object is a locally C^{*}-algebra, the Extended CAR Algebra,

$$
\mathscr{A}(\mathfrak{H}):=\overline{\mathfrak{A}(\mathfrak{H})}^{\left(\|\cdot\|_{n}\right)_{n}}
$$

- It contains a C^{*}-algebra

$$
\mathfrak{A}_{\infty}(\mathfrak{H}):=\left\{A \in \mathscr{A}(\mathfrak{H}) \mid \sup _{n \in \mathbb{N}}\|A\|_{n}<\infty\right\}
$$

with surjective morphism $\mathrm{F}: \mathfrak{A}_{\infty}(\mathfrak{H}) \rightarrow \mathcal{A}(\mathfrak{H})$.

Extended CAR Algebra

■ The final object is a locally C^{*}-algebra, the Extended CAR Algebra,

$$
\mathscr{A}(\mathfrak{H}):=\overline{\mathfrak{A}}(\mathfrak{H})_{\left(\|\cdot\|_{n}\right)_{n}}^{\text {. }}
$$

- It contains a C^{*}-algebra

$$
\mathfrak{A}_{\infty}(\mathfrak{H}):=\left\{A \in \mathscr{A}(\mathfrak{H}) \mid \sup _{n \in \mathbb{N}}\|A\|_{n}<\infty\right\}
$$

with surjective morphism $\mathrm{F}: \mathfrak{A}_{\infty}(\mathfrak{H}) \rightarrow \mathcal{A}(\mathfrak{H})$.

- Under certain conditions one can extend F to certain unbounded elements of $\mathscr{A}(\mathfrak{H})$ to be unbounded operators associated with a von Neumann completion of $\mathcal{A}(\mathfrak{H})$.

Solving the Equation

■ Renormalised products appearing in the Stochastic Quantisation equations (of superrenormalisable theories) are always contained in $\mathscr{A}(\mathfrak{H})$, correspond to unbounded operators affiliated with $(\mathcal{A}(\mathfrak{H}), \omega)$.

Solving the Equation

■ Renormalised products appearing in the Stochastic Quantisation equations (of superrenormalisable theories) are always contained in $\mathscr{A}(\mathfrak{H})$, correspond to unbounded operators affiliated with $(\mathcal{A}(\mathfrak{H}), \omega)$.

- Equation can be lifted from being naïvely $\mathcal{A}(\mathfrak{H})$-valued to $\mathscr{A}(\mathfrak{H})$.

Solving the Equation

- Renormalised products appearing in the Stochastic Quantisation equations (of superrenormalisable theories) are always contained in $\mathscr{A}(\mathfrak{H})$, correspond to unbounded operators affiliated with $(\mathcal{A}(\mathfrak{H}), \omega)$.

■ Equation can be lifted from being naïvely $\mathcal{A}(\mathfrak{H})$-valued to $\mathscr{A}(\mathfrak{H})$.

- Solving equation in $\mathscr{A}(\mathfrak{H})$ equivalent to solving equation in
$\mathscr{A}_{n}(\mathfrak{H}):=\mathscr{A}(\mathfrak{H}) / \operatorname{ker}\|\cdot\|_{n}$

Solving the Equation

■ Renormalised products appearing in the Stochastic Quantisation equations (of superrenormalisable theories) are always contained in $\mathscr{A}(\mathfrak{H})$, correspond to unbounded operators affiliated with $(\mathcal{A}(\mathfrak{H}), \omega)$.

■ Equation can be lifted from being naïvely $\mathcal{A}(\mathfrak{H})$-valued to $\mathscr{A}(\mathfrak{H})$.

- Solving equation in $\mathscr{A}(\mathfrak{H})$ equivalent to solving equation in $\mathscr{A}_{n}(\mathfrak{H}):=\mathscr{A}(\mathfrak{H}) / \operatorname{ker}\|\cdot\|_{n}$

■ For each $n \in \mathbb{N}$ obtain maximal local existence time T_{n}. If $\inf _{n} T_{n}=T>0$, solution exists in $\mathscr{A}(\mathfrak{H})$.

Open Problems

- Find method to prove global in time existence, Pauli Principle?

Open Problems

- Find method to prove global in time existence, Pauli Principle?
- Find robust methods to show correspondence with unbounded operators affiliated to original CAR algebra, Non-Commutative L^{p}-Spaces?

Open Problems

- Find method to prove global in time existence, Pauli Principle?
- Find robust methods to show correspondence with unbounded operators affiliated to original CAR algebra, Non-Commutative L^{p}-Spaces?

■ Use with more models

Thank You!

References

M. Dubois-Violette.

A generalization of the classical moment problem on *-algebras with applications to relativistic quantum theory. I.
Comm. Math. Phys. 43, no. 3, (1975), 225-254.

[^0]: ${ }^{1}$ based on joint work with Ajay Chandra and Martin Hairer

