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Abstract:

String-localized QFT is an autonomous approach to (perturbative) QFT,
not relying on quantization of a given classical field theory. Instead,
quantum principles, notably the necessity of a Hilbert space, constrain the
form of admissible interactions.

It will be shown that the unique self-interaction of particles of helicity 2
consistent with the said quantum principles coincides with the
Einstein(-Hilbert) Lagrangian, and their couplings to matter must coincide
with the known interactions whose form is usually credited to general
covariance.

General covariance is thus not assumed but derived.

Joint work with Christian Gass and Jose Gracia-Bondia, Class. Qu.
Grav. 2023, arXiv:2308.09843
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“Common wisdom” says:

Quantum Theory and Einstein-Hilbert Gravity like each
other “like cats and dogs”.
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String-localized quantum field theory says:

Quantum Theory with helicity-2 particles wants
Einstein-Hilbert Gravity.
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QUANTUM FIELDS OF HELICITY 2:
gauge versus string-localized

COUPLING TO MATTER: THE “LOCK”

SELF-INTERACTIONS: THE “KEY”

EINSTEIN-HILBERT AND GENERAL
COVARIANCE
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Weinberg-Witten quantization of
helicity 2

Wigner unitary representations U±2 for helicity 2 = Mackey
induced from corresponding unireps u±2 of E2.
Two creation and innihilation operators a±2(k),a±2∗(k). Fock
space with two states per momentum.
Weinberg covariant intertwiner construction (at least rank 4)

F[µκ][νλ](x) =
∫

dµ0(k)
∑
±

[
e−ikxa±2(k)u±2

[µκ][νλ](k) + h.c .
]
.

Positive definite two-point function

〈〈F[µκ][νλ](x)F[µ′κ′][ν′λ′](x ′)〉〉 = (F[µκ][νλ](x)Ω,F[µ′κ′][ν′λ′](x)Ω)

= 1
2
[
ηµµ′ηνν′+ηµν′ηνµ′−ηµνηµ′ν′

]
∂κ∂λ∂

′
κ′∂
′
λ′W0(x−x ′) −[µκ]− [µ′κ′]

−[νλ]− [ν ′λ′]
Symmetries of the “linearized Riemann tensor”.
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Gauge theory approach
Metric deviation field hµν in Minkowski background√
−ggµν =: ηµν + κhµν .

Canonical quantization in Feynman gauge:

〈〈hµν(x)hµ′ν′(x ′)〉〉 = 1
2
[
ηµµ′ηνν′ +ηµν′ηνµ′−ηµνηµ′ν′

]
W0(x−x ′)

10 components (not conserved, not traceless), 10 states per
momentum, indefinite two-point function
Impose subsidiary conditions, ghosts, BRST ⇒ Hilbert space H.
Only the linearized Riemann tensor R[µκ][νλ] = κ

2F[µκ][νλ] is
defined on H:

F[µκ][νλ] = ∂µ∂νhκλ − ∂κ∂νhµλ − ∂µ∂λhκν + ∂κ∂λhµν .

Unitarily equivalent to F[µκ][νλ] on Wigner Fock space.
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Starts with indefinite state space.
Return to Hilbert space:

10 d.o.f. + ghosts− BRST = 2 d.o.f.

hµν does not exist on the Hilbert space.

Should this really be the “method of choice”?
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String-localized free field

Start with F[µκ][νλ] on Wigner Hilbert space.
Define
hµν(x , e1, e2) :=

∫ ∞
0

ds1

∫ ∞
0

ds2 F[µκ][νλ](x + s1e1 + s2e2)eκeλ.

Here, ei are two spacelike vectors, so that hµν(x , e1, e2) is
localized in the region x + R+e1 + R+e2.
Gives back the local field
∂µ∂νhκλ(ei )−∂κ∂νhµλ(ei )−∂µ∂λhκν(ei )+∂κ∂λhµν(ei ) = F[µκ][νλ].

Two degrees of freedom by construction:
∂µhµν(x , e1, e2) = 0, ηµνhµν(x , e1, e2) = 0.
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Needs smearing in ei with smooth c(ei ):
hµν(x , c) = Iκc I

λ
c

(
F[µκ][νλ]

)
(x).

The notation “Iκc ” includes the integration along x + R+e, the
contraction with eκ, and the smearing with c(e).
The previous properties remain true provided

∫
de c(e) = 1

(“unit weight”).
Depends on arbitrary choice of c(e) of unit weight.
The string-variation is a derivative:

δc(hµν(x , c)) = ∂µwν(x , c) + ∂νwµ(x , c)

with another string-localized field wµ.
δc “looks like an operator-valued gauge transformation”.
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Positive two-point function

〈〈hµν(x , c)hµ′ν′(x ′, c)〉〉 = 1
2
[
E ′µµ′E

′
νν′+E ′µν′E

′
νµ′−EµνE ′′µ′ν′

]
W0(x−x ′)

with E ,E ′,E ′′ = η+ derivatives of string-integration operators
acting on W0

Kinematic propagator violates trace condition ηµνhµν(c) = 0:

〈〈Tkinhµνh
′
µ′ν′〉〉 := 1

2
[
E ′µµ′E

′
νν′ +E ′µν′E

′
νµ′−EµνE

′′
µ′ν′
]
T0(x−x ′).

Renormalize to make it traceless:

〈〈Trenhµνh
′
µ′ν′〉〉 = 〈〈Tkinhµνh

′
µ′ν′〉〉+Tr (x−x ′)+

∑6

i=1
ciTr ,i (x−x ′)

with Tr and Ti ,r involving string-integrated δ-functions.

The only redundancy is the choice of the smearing function
c(e) of unit weight. (May have arbitrarily narrow support.)
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Coupling to matter

Lmat,1(x , c) = 1
2hµν(x , c)Θµν

mat(x).
Standard stress-energy tensors of matter. Violate Ward identity:

∂µ〈〈TΘµν
mat(x)Θρσ

mat(x ′)〉〉 6= 0

(some messy explicit expressions, depending on the type (scalar,
Dirac, Maxwell) of matter.)
Perturbative S-matrix at tree level

Smat = Te iκ
∫
dx Lmat,1(x ,c) = 1 + iκS (1) + (iκ2)

2 S (2) + . . .

Tree level is sufficient to determine the interactions!
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The S-matrix must be independent of the meaningless choice of
c(e) (“String Independence” SI).
The first-order SI is trivial because δc(Lmat,1) is a derivative by
conservation of Θmat:

δc(S (1))=
∫

dx δc(Lmat,1(x , c))=
∫
∂µwν Θµν

mat =
∫
∂µ
(
wν Θµν

mat
)

= 0.

Second-order SI

δc(S (2)) =
∫∫

δc
(
T (hΘmat)(h′Θ′mat)

)
|tree != 0.

The contribution from h h′= 〈〈Thh′〉〉 = η+ derivatives vanishes
by conservation of Θmat.
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The contribution
1
4δc(hh′)Θmat Θ′mat = (∂w h′ + h ∂w ′) · TΘmatΘ′mat

does not vanish because of violation of Ward identities.
Explicit computation for all three types of matter:
1
4δc(hh′)Θmat Θ′mat = derivatives+iδc(Lmat,2)δ(x−x ′)+Omat,2(x , x ′)

with the “universal obstruction”
Omat,2(x , x ′) = −iΘµν

matw
κ
(
∂µhκν + ∂νhκµ − ∂κhµν

)
δ(x − x ′),

The derivatives do not contribute to δc(S). The second term
can cancelled by adding the “induced second-order
interaction” κ2

2 Lmat,2 to Lmat. (More on Lmat,2 later.)
The obstruction term cannot be cancelled. The second-order SI
cannot be fulfilled. The perturbation theory is inconsistent,
because it depends on the meaningless quantity c(e).
This is what we call “the lock”.
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The key to open the lock is the helicity-2 self-interaction:
In first order, Lself = κL1,self + . . . must satisfy

δc(L1,self) = derivatives,
in order that the S-matrix

S = Te i
∫

(Lself+Lmat)

still fulfills SI in first order. This fixes (up to derivatives and an
overall factor) the unique cubic self-interaction

Lself,1(c) = three terms involving of structure h · ∂hcdot∂h.

The computation in second order yields
Lself,1 L

′
self,1 = derivatives + iδc(Lself,2)δ(x − x ′).

with Lself,2 = three terms h · h · ∂h · ∂h. The derivatives do not
contribute to δc(S). The second term can cancelled by adding
the “induced second-order self-interaction” κ2

2 Lself,2 to Lself .
Self-interactions of helicity-2 particles are separably consistent
to second order.
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It remains to consider the mixed terms

δc
(
Lself,1 L

′
mat,1 +Lmat,1 L

′
self,1

)
= 1

2
(
Lself,1 h

′
µν Θ′µνmat+Θµν

mat hµν L
′
self,1

)
.

Obviously contains a factor Θmat. The computation yields

= derivatives + iΘµν
matw

κ
(
∂µhκν + ∂νhκµ − ∂κhµν

)
δ(x − x ′),

which exactly cancels the previous Omat,2(x , x ′), provided the
overall factor of Lself,1 was correctly adjusted.
The key has opened the lock.
To second order, the interaction is

L = κLself,1 + κ2

2 Lself,2 + κLmat,1 + κ2

2 Lmat,2 + . . .

The induced interactions Lself,1 and Lmat,1 (for each matter
type) are uniquely determined by the need to secure SI, i.e., the
need to get an S-matrix that does not depend on the
meaningless c(e).



K.-H. Rehren Quantum General Covariance 20 / 25

HELICITY TWO QUANTUM FIELDS:
gauge versus string-localized

COUPLING TO MATTER: THE “LOCK”

SELF-INTERACTIONS: THE “KEY”

EINSTEIN-HILBERT AND GENERAL
COVARIANCE



K.-H. Rehren Quantum General Covariance 21 / 25

Recall the definition
√
−ggµν = ηµν + κhµν of the classical

metric deviation. κ2 = 32πGN is related to Newton’s constant.
Expand the Einstein-Hilbert action (dictated by general
covariance)

1
16πGN

∫
d4x

√
−g(x)R(x)

in terms of h, beginning with quadratic terms ∂h · ∂h and
h · ∂∂h.
One may remove a total derivative (irrelevant for the classical
equations of motion) to eliminate all second derivatives. One
arrives at the Einstein action.
The quadratic terms determine the “canonical quantization”.
When gauge conditions are imposed (Hilbert gauge: ∂µhµν = 0,
trace ηµνhµν = 0), the cubic and quartic terms are of structure
h · ∂h · ∂h and h · h · ∂h · ∂h (no second derivatives).
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SI, that is, quantum consistency of string-localized helicity-2
interactions imply general covariance:

The self-interactions Lself,1(c) and Lself,2(c), as determined by
SI in first and second order, coincide with the cubic and quartic
terms of the Einstein(-Hilbert) Lagrangian, in which the
classical hµν is replaced by the free string-localized quantum
field hµν(c) (with normal ordering).
Independent of the propagator renormalization constants ci .
Recall that hµν(c) by construction satisfies the “gauge
conditions” that have to be imposed “by hand” on hµν .
The matter interactions Lmat,1 and Lmat,2 coincide with the
cubic and quartic terms (= linear and quadratic in h) of the
generally covariant free matter Lagrangians, upon the same
substitution, and case by case for scalar, Dirac and Maxwell
matter.
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CONCLUSION AND PERSPECTIVE
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Higher order not yet done (compare analogous work by Dütsch
in the setting of “perturbative gauge invariance”).
The tree level recursively fixes the interactions. Loop
renormalization to be done! (Result by Gaß provides essential
preriquisites for Epstein-Glaser renormalization.)
No power counting renormalizability. Speculation: SI could turn
out to be so powerful as to fix renormalization constants
beyond power counting. (??)
String-independent interacting local observables?

Compute interacting fields in two steps: the intermediate step
decides whether an interacting field will be local or
string-localized.
The former will be “local observables” (in the present
fixed-background setting, we expect F[µκ][νλ]|L(c) to be local).
The latter live on a (possibly superselection-extended) Hilbert
space and may interpolate between sectors (Example QED).
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Similar “lock-key” scenarios exist also in SM physics:
“Minimal” interactions Aa

µ(c)jµa of massless gluons with fermions
satisfy SI at first order, but are inconsistent at second order.
Adding the cubic gluon self-interaction resolves the obstruction,
and determines the quartic self-interaction.
Massive vector bosons (W ,Z ) can be coupled to chiral fermions
(without a Higgs mechanism to make them massive). Their
non-abelian self-interaction is inconsistent, unless one adds a
coupling to a scalar field (“Higgs”) with a Higgs potential.

The string-localized interacting fields of QED include the Dirac
field. Its non-locality is necessary to be compatible with the
global Gauß Law.
SQFT reproduces gauge theories without assuming gauge or
diffeomorphism invariance.


