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Locality

The word locality can have different
meanings in (A)QFT:

Locality as localization, meaning that
observables should be localized in
bounded regions O ⊂ M.
Locality in the sense that interactions are
point-localized (classically described by
local functionals).
Locality as causality, meaning that
observables assigned to spacelike
separated regions have to commute (this is
the key notion of locality in AQFT).

M

The first type of locality fails already for some observables in QED:
string-like, wedge-like or cone-like localization.
The second type of locality breaks down if we consider non-local
interactions.
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Beyond locality

The third type of locality, however, does not make sense if
observables happen to be all localized in all of M (as is the case
in gravity for relational observables).

Another situation where we need to go beyond locality is when
we consider manifolds with boundaries and corners or “boundary
at infinity.”
Many physically interesting instances of non-local
theories/observables admit description in terms of appropriate
bulk, boundary and corner data.
Question: What is the natural extension of Haag-Kastler axioms
(or something similar in spirit) to the situation with boundary and
corners (semi-local quantum physics?).
Hint: look at the BV-BFV framework, [Cattaneo, Mnev, Reshetikhin,
CMP 2011, CMP 2015 ]
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Basic structure
BV quantisation and the BRST charge

BV-BFV data, following Cattaneo, Mnev,
Reshetikhin (CMR)

(F ,Ω,S,Q)(F ,Ω,S,Q)

(−1)-symplectic graded manifold (F ,Ω).
Degree 0 action functional S
An odd vector field Q on F of degree 1 with the
cohomological property [Q,Q] = 0.

(F∂ ,Ω∂ ,S∂ ,Q∂)(F∂ ,Ω∂ ,S∂ ,Q∂)

Exact (0)-symplectic graded manifold
(F∂ ,Ω∂ = δα∂), where δ denotes the de Rham
differential on the space of local forms,
Degree 1 local action functional S∂ on F∂ ,
Odd vector field Q∂ on F∂ of degree 1 with the
property: [Q∂ ,Q∂ ] = 0.

M
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Basic structure
BV quantisation and the BRST charge

BV-BFV data, following Cattaneo, Mnev,
Reshetikhin (CMR)

(F ,Ω,S,Q)(F ,Ω,S,Q) and (F∂ ,Ω∂ ,S∂ ,Q∂)(F∂ ,Ω∂ ,S∂ ,Q∂) connected by

π : F → F∂

such that:

ιQΩ = δS + π∗α∂

1
2 ιQιQΩ = π∗S∂

1
2 ιQ∂ Ω∂ = δS∂

1
2 ιQ∂ ιQ∂ Ω∂ = 0

We can generalize this and assign data to corners,
etc.

M

∂M
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BV-BFV

Basic structure
BV quantisation and the BRST charge

Generalization to asymptotic boundary

Take the limit where ∂M is the boundary “at infinity”

Aim: rigorous mathematical description of asymptotic
observables and symmetries.
Asymptotic quantization of QED and QG goes back to Ashtekar
(mostly the 80’s) and was later developed by others, notably
Herdegen (90’s to present), who has also been advocating the
need to weaken the usual AQFT paradigm of locality.
Recent attention: works of Strominger et.al., including New
symmetries of QED (2015), relate asymptotic charges to the
Weinberg soft photon theorem and memory effects.
Asymptotic symmetries in the BV-BFV formalism, Kasia Rejzner,
Michele Schiavina, CMP 2021.
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BV-BFV

Basic structure
BV quantisation and the BRST charge

Physical input

A globally hyperbolic spacetime M.

Configuration space E(M): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ).
Typically E(M) is a space of smooth sections of some vector
bundle E π−→ M over M.
Classical observables are functionals F ∈ C∞(E(M),R), whose
derivatives satisfy appropriate regularity conditions.
Dynamics: we use a covariant modification of the Lagrangian
formalism. Since M is non-compact, the action S is not of the

form S =

∫
L(ϕ) for some Lagrangian density, but a function

C∞c (M) 3 f 7→
∫

fL(ϕ) that assigns a functional to each cutoff f .

From S we obtain a 1-form dS on configuration space that gives
the equations of motion: dS(ϕ) = 0.
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Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Symmetries

In the BV framework, symmetries are identified with vector fields
(directions) on E .

We denote vector fields that are multilocal and compactly
supported by V. They act on F as derivations:

∂X F (ϕ) := 〈F (1)(ϕ),X (ϕ)〉
For X ∈ V and action S, denote 〈dS(ϕ),X (ϕ)〉 ≡ δS(X )(ϕ).
A symmetry of S is a direction in E
in which the action is constant,
i.e. it is a vector field X ∈ V
such that: ∀ϕ ∈ E : δS(X ) ≡ 0.

E(M)

Cϕ

F
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Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

BV complex

Let the symmetries be characterize by a Lie algebra s. Extend E
to a graded manifold (extended configuration space )
E .

= E ⊕ s[1]. The space of functions on E can be equipped with
the Chevalley-Elienberg differential γ whose cohomology
characterizes the space of gauge-invariant functionals.

The underlying algebra of the BV complex is the space of
multivector fields on E , i.e. the space of functionals (with
appropriate regularity) on the shifted cotangent bundle
F ≡ T ∗[−1]E (space of fields). Hence BV ⊂ C∞(T ∗[−1]E).
BV is equipped with the BV differential s = δS +γ, which encodes
the space of solutions to the equations of motion (in lowest order
δS = −ιdS) and the space of invariants under the symmetries.
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Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Antibracket and the Classical Master Equation

BV, as the space of multivector fields, comes with a shifted
Poisson bracket: the Schouten bracket {., .}, aka the antibracket.

Generators of the fibers of BV are called antifields.
Differential s is not inner with respect to {., .}, but locally it can be
written as:

sX = {X ,Sext(f )} , f ≡ 1 on supp X

....and Sext is the extended action, which contains ghosts (odd
generators of E), antifields and potentially more.
The BV differential s has to be nilpotent, i.e.: s2 = 0, which leads
to the classical master equation (CME):

{Sext(f ),Sext(f )} = 0 ,

modulo terms that vanish in the limit of constant f .
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Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Poisson structure

supp f

supp ∆A(f )

supp ∆R(f )

The (unshifted) Poisson bracket of the free
theory is

bF ,Gc .=
〈

F (1),∆G(1)
〉
,

where ∆ = ∆R −∆A is the Pauli-Jordan
(commutator) function.

For the free scalar field the equation of motion
is Pϕ = 0, where P = −(2 + m2) is (minus) the
Klein-Gordon operator.
If M is globally hyperbolic (has a Cauchy
surface), P admits retarded and advanced
Green’s functions ∆R, ∆A.
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Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Deformation of the free theory

Recall that we can split the action S = S0 + V , where S0 is
quadratic. The free theory (that of S0) is quantized using
deformation quantization.

Define the ?-product (deformation of the pointwise product):

(F ?G)(ϕ)
.

=
∞∑

n=0

~n

n!

〈
F (n)(ϕ),W⊗nG(n)(ϕ)

〉
,

where W is the 2-point function of a Hadamard state (on
Minkowski spacetime this is just the Wightman 2-point function)

and it differs from
i
2

∆ by a symmetric bidistribution:

W =
i
2

∆ + H .

The free QFT is defined as an appropriate completion of
F(M)[[~]], equipped with ? and the conjugation ∗, where
F ∗(ϕ)

.
= F (ϕ).
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Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Time-ordered product

Let Freg(M) be the space of functionals whose derivatives are
test functions, i.e. F (n)(ϕ) ∈ D(Mn),

The time-ordering operator T is defined as:

T F (ϕ)
.

=
∞∑

n=0

1
n!

〈
F (2n)(ϕ), (~

2 ∆F)⊗n
〉
,

where ∆F =
i
2

(∆A + ∆R) + H and H = W − i
2

∆.

Formally it corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance i~∆F”,

T F (ϕ)
formal

=

∫
F (ϕ− φ) dµi~∆F (φ) .

Define the time-ordered product ·T on Freg(M)[[~]] by:

F ·T G .
= T (T −1F · T −1G)

Kasia Rejzner BV-BFV formalism: a blueprint for semi-local quantum physics 13 / 19



Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Time-ordered product

Let Freg(M) be the space of functionals whose derivatives are
test functions, i.e. F (n)(ϕ) ∈ D(Mn),
The time-ordering operator T is defined as:

T F (ϕ)
.

=
∞∑

n=0

1
n!

〈
F (2n)(ϕ), (~

2 ∆F)⊗n
〉
,

where ∆F =
i
2

(∆A + ∆R) + H and H = W − i
2

∆.

Formally it corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance i~∆F”,

T F (ϕ)
formal

=

∫
F (ϕ− φ) dµi~∆F (φ) .

Define the time-ordered product ·T on Freg(M)[[~]] by:

F ·T G .
= T (T −1F · T −1G)

Kasia Rejzner BV-BFV formalism: a blueprint for semi-local quantum physics 13 / 19



Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Time-ordered product

Let Freg(M) be the space of functionals whose derivatives are
test functions, i.e. F (n)(ϕ) ∈ D(Mn),
The time-ordering operator T is defined as:

T F (ϕ)
.

=
∞∑

n=0

1
n!

〈
F (2n)(ϕ), (~

2 ∆F)⊗n
〉
,

where ∆F =
i
2

(∆A + ∆R) + H and H = W − i
2

∆.

Formally it corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance i~∆F”,

T F (ϕ)
formal

=

∫
F (ϕ− φ) dµi~∆F (φ) .

Define the time-ordered product ·T on Freg(M)[[~]] by:

F ·T G .
= T (T −1F · T −1G)

Kasia Rejzner BV-BFV formalism: a blueprint for semi-local quantum physics 13 / 19



Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Time-ordered product

Let Freg(M) be the space of functionals whose derivatives are
test functions, i.e. F (n)(ϕ) ∈ D(Mn),
The time-ordering operator T is defined as:

T F (ϕ)
.

=
∞∑

n=0

1
n!

〈
F (2n)(ϕ), (~

2 ∆F)⊗n
〉
,

where ∆F =
i
2

(∆A + ∆R) + H and H = W − i
2

∆.

Formally it corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance i~∆F”,

T F (ϕ)
formal

=

∫
F (ϕ− φ) dµi~∆F (φ) .

Define the time-ordered product ·T on Freg(M)[[~]] by:

F ·T G .
= T (T −1F · T −1G)

Kasia Rejzner BV-BFV formalism: a blueprint for semi-local quantum physics 13 / 19



Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Interaction

·T is the time-ordered version of ?, in the sense that

F ·T G = F ?G ,

if the support of F is later than the support of G.

Interaction is a functional V , for the moment V ∈ Freg(M).
We define the formal S-matrix, S(λV ) ∈ Freg((~))[[λ]] by

S(λV )
.

= eiλV/~
T = T (eT

−1(iλV/~)) .

Interacting fields are elements of Freg[[~, λ]] given by

RλV (F )
.

=(eiλV/~
T )?−1?(eiλV/~

T ·T F ) = −i~
d

dµ
S(λV )−1S(λV +µF )

∣∣
µ=0

We define the interacting star product as:

F ?V G .
= R−1

V (RV (F ) ? RV (G)) ,

Renormalization problem: extend ·T , and all the above
structures, to V local and non-linear.
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F ?V G .
= R−1

V (RV (F ) ? RV (G)) ,

Renormalization problem: extend ·T , and all the above
structures, to V local and non-linear.
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Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

QME on regular functionals

The linearized classical BV operator is defined by

s0X = {X ,S0} .

The quantum master equation is the condition that the S-matrix
is invariant under s0, i.e.: s0(S(V )) = {eiV/~

T ,S0} = 0.
This expression can be rewritten as:

{eiV/~
T ,S0} = eiV/~

T ·T
(

1
2
{S0 + V ,S0 + V} − i~4 (S0 + V )

)
,

where 4 is the BV Laplacian, which on regular functionals is

4X = (−1)(1+|X |)
∫

dx
δ2X

δϕ‡(x)δϕ(x)
.

We obtain the standard form of the QME (as a condition on V ):
1
2
{S0 + V ,S0 + V} = i~4 (S0 + V ).
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Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Modified QME on a Chauchy slice

Typically, QME holds on the nose only if we arrange the choices
of test functions f in various terms of the action in a specific way.

In general, CME and QME are violated by terms that depend on
df .
Note that replacing f with characteristic function θ of some
Cauchy slice (with a compact Cauchy surface), dθ is supported
on the boundary. Hence the support of df plays the role of
“smoothed-out boundary.”
QME has to be replaced by the modified QME

s0 S(V ) = S(V ) ?
i
~

RV (S∂) .

Here S∂ is identified as the BRST charge (compare with [Hollands,
RMP 2007]) and it is used to select physical states in the
Krein-space representation of the BV algebra (similar to CMR).
Details will appear in my upcoming paper with Schiavina.
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Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Quantum BV operator I

The free quantum BV operator ŝ0 is defined on regular
functionals by:

ŝ0 = T −1 ◦ s0 ◦ T = s0 − i~4 ,

The interacting quantum BV operator ŝ is defined by:

ŝ = R−1
V ◦ s0 ◦ RV ,

i.e. it is the twist of the free BV operator by the (non-local!) map
that intertwines the free and the interacting theory.
The 0th cohomology of ŝ characterizes quantum gauge invariant
observables.
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ŝ = R−1
V ◦ s0 ◦ RV ,

i.e. it is the twist of the free BV operator by the (non-local!) map
that intertwines the free and the interacting theory.
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Locality
BV-BFV

Basic structure
BV quantisation and the BRST charge

Quantum BV operator II

Assuming QME, we obtain the following expression:

ŝ = s − i~4 .

In the presence of boundary terms, we need to correct ŝ, so that
the true BV operator is:

s̃ := ŝ − i
~

[•,S∂ ]?V = s − i~4 ,

which is again local. This again agrees with ideas of CMR.
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Thank you very much for your attention!
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