南 Università di Genova

Hadamard States for Maxwell Fields via Complete Gauge Fixing

Gabriel Schmid

Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genoa, Italy

September 22, 2023

Joint work with Simone Murro (Università di Genova)

Linear Gauge Theories I: Classical Theory

Consider a globally-hyperbolic Lorentzian manifold

$$
\mathrm{M}=\mathbb{R} \times \Sigma, \quad g=-\beta^{2} \mathrm{~d} t \otimes \mathrm{~d} t+h_{t} .
$$

Linear Gauge Theories I: Classical Theory

Consider a globally-hyperbolic Lorentzian manifold

$$
\mathrm{M}=\mathbb{R} \times \Sigma, \quad g=-\beta^{2} \mathrm{~d} t \otimes \mathrm{~d} t+h_{t}
$$

Definition (Hack-Schenkel 2012; Gérard-Wrochna 2014)

A linear gauge theory is a quadruple $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ consisting of:
(1) two Hermitian bundles $\left(\mathrm{V}_{0},\langle\cdot, \cdot\rangle \mathrm{V}_{0}\right)$ and $\left(\mathrm{V}_{1},\langle\cdot, \cdot\rangle \mathrm{V}_{1}\right)$ over M ;
(2) a formally self-adjoint linear differential operator $\mathrm{P}: \Gamma\left(\mathrm{V}_{1}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$;
(3) a linear differential operator $\mathrm{K}: \Gamma\left(\mathrm{V}_{0}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$ s.t.
(i) $\mathrm{P} \circ \mathrm{K}=0$,
(ii) $\mathrm{D}_{1}:=\mathrm{P}+\mathrm{KK}^{*}: \Gamma\left(\mathrm{V}_{1}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$ is Green hyperbolic,
(iii) $\mathrm{D}_{0}:=\mathrm{K} * \mathrm{~K}: \Gamma\left(\mathrm{V}_{0}\right) \rightarrow \Gamma\left(\mathrm{V}_{0}\right)$ is Green hyperbolic.
\hookrightarrow Gauge transformations: $\Gamma\left(\mathrm{V}_{1}\right) \ni s \mapsto s+\mathrm{K} \omega$ for $\omega \in \Gamma\left(\mathrm{V}_{0}\right)$.
$\hookrightarrow \mathrm{D}_{1}$ is gauge-fixed operator for canonical gauge condition $\mathrm{K}^{*} s=0$ ("subsidiary condition").

Linear Gauge Theories I: Classical Theory

Consider a globally-hyperbolic Lorentzian manifold

$$
\mathrm{M}=\mathbb{R} \times \Sigma, \quad g=-\beta^{2} \mathrm{~d} t \otimes \mathrm{~d} t+h_{t} .
$$

Definition (Hack-Schenkel 2012; Gérard-Wrochna 2014)

A linear gauge theory is a quadruple $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ consisting of:
(1) two Hermitian bundles $\left(\mathrm{V}_{0},\langle\cdot, \cdot\rangle \mathrm{V}_{0}\right)$ and $\left(\mathrm{V}_{1},\langle\cdot, \cdot\rangle \mathrm{V}_{1}\right)$ over M ;
(2) a formally self-adjoint linear differential operator $\mathrm{P}: \Gamma\left(\mathrm{V}_{1}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$;
(3) a linear differential operator $\mathrm{K}: \Gamma\left(\mathrm{V}_{0}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$ s.t.
(i) $\mathrm{P} \circ \mathrm{K}=0$,
(ii) $\mathrm{D}_{1}:=\mathrm{P}+\mathrm{KK}^{*}: \Gamma\left(\mathrm{V}_{1}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$ is Green hyperbolic,
(iii) $\mathrm{D}_{0}:=\mathrm{K} * \mathrm{~K}: \Gamma\left(\mathrm{V}_{0}\right) \rightarrow \Gamma\left(\mathrm{V}_{0}\right)$ is Green hyperbolic.
\hookrightarrow Gauge transformations: $\Gamma\left(\mathrm{V}_{1}\right) \ni s \mapsto s+\mathrm{K} \omega$ for $\omega \in \Gamma\left(\mathrm{V}_{0}\right)$.
$\hookrightarrow \mathrm{D}_{1}$ is gauge-fixed operator for canonical gauge condition $\mathrm{K}^{*} s=0$ ("subsidiary condition").
\hookrightarrow Examples: linearized Yang-Mills and Maxwell, linearized gravity, Rarita-Schwinger.

Linear Gauge Theories I: Classical Theory

Consider a globally-hyperbolic Lorentzian manifold

$$
\mathrm{M}=\mathbb{R} \times \Sigma, \quad g=-\beta^{2} \mathrm{~d} t \otimes \mathrm{~d} t+h_{t}
$$

Definition (Hack-Schenkel 2012; Gérard-Wrochna 2014)

A linear gauge theory is a quadruple $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ consisting of:
(1) two Hermitian bundles $\left(\mathrm{V}_{0},\langle\cdot, \cdot\rangle \mathrm{V}_{0}\right)$ and $\left(\mathrm{V}_{1},\langle\cdot, \cdot\rangle \mathrm{V}_{1}\right)$ over M ;
(2) a formally self-adjoint linear differential operator $\mathrm{P}: \Gamma\left(\mathrm{V}_{1}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$;
(3) a linear differential operator $\mathrm{K}: \Gamma\left(\mathrm{V}_{0}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$ s.t.
(i) $\mathrm{P} \circ \mathrm{K}=0$,
(ii) $\mathrm{D}_{1}:=\mathrm{P}+\mathrm{KK}^{*}: \Gamma\left(\mathrm{V}_{1}\right) \rightarrow \Gamma\left(\mathrm{V}_{1}\right)$ is Green hyperbolic,
(iii) $\mathrm{D}_{0}:=\mathrm{K}^{*} \mathrm{~K}: \Gamma\left(\mathrm{V}_{0}\right) \rightarrow \Gamma\left(\mathrm{V}_{0}\right)$ is Green hyperbolic.
\hookrightarrow Gauge transformations: $\Gamma\left(\mathrm{V}_{1}\right) \ni s \mapsto s+\mathrm{K} \omega$ for $\omega \in \Gamma\left(\mathrm{V}_{0}\right)$.
$\hookrightarrow \mathrm{D}_{1}$ is gauge-fixed operator for canonical gauge condition $\mathrm{K}^{*} s=0$ ("subsidiary condition").
\hookrightarrow Examples: linearized Yang-Mills and Maxwell, linearized gravity, Rarita-Schwinger.

$\hookrightarrow \quad$| Ordinary Field Theories $(\mathrm{K}=0)$ | Gauge Theories $(\mathrm{K} \neq 0)$ |
| :---: | :---: |
| Phyperbolic | P non-hyperbolic |
| fibre metric usually positive-definite | fibre metric usually not positive-definite |

Linear Gauge Theories II: Quantum Theory

Let $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ be a linear gauge theory on (M, g) and G_{1} be the causal propagator of D_{1}.

$$
\mathcal{V}_{\mathrm{P}}:=\frac{\operatorname{ker}\left(\left.\mathrm{K}^{*}\right|_{\Gamma_{\mathrm{c}}}\right)}{\operatorname{ran}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{c}}}\right)} \xrightarrow[\cong]{\left[\mathrm{G}_{1}\right]} \frac{\operatorname{ker}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{sc}}}\right)}{\operatorname{ran}\left(\left.\mathrm{K}\right|_{\Gamma_{\mathrm{sc}}}\right)}
$$

Linear Gauge Theories II: Quantum Theory

Let $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ be a linear gauge theory on (M, g) and G_{1} be the causal propagator of D_{1}.

$$
\mathcal{V}_{\mathrm{P}}:=\frac{\operatorname{ker}\left(\left.\mathrm{K}^{*}\right|_{\Gamma_{\mathrm{c}}}\right)}{\operatorname{ran}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{c}}}\right)} \xrightarrow[\cong]{\left[\mathrm{G}_{1}\right]} \frac{\operatorname{ker}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{sc}}}\right)}{\operatorname{ran}\left(\left.\mathrm{K}\right|_{\Gamma_{\mathrm{sc}}}\right)}
$$

Algebraic Quantization:

- Step 1: Classical phase space $\left(\mathcal{V}_{\mathrm{P}}, \sigma([\cdot],[\cdot]):=\mathrm{i}\left(\cdot, \mathrm{G}_{1} \cdot\right)_{\mathrm{V}_{1}}\right)$ with $(\cdot, \cdot)_{\mathrm{V}_{i}}:=\int_{\mathrm{M}}\langle\cdot, \cdot\rangle_{\mathrm{V}_{i}} \operatorname{vol}_{g}$.

$$
\left(\mathcal{V}_{\mathrm{P}}, \sigma\right) \quad \rightarrow \quad \operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \sigma\right)
$$

$\operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \sigma\right) \ldots$ unital $*$-algebra constructed as follows:
generators: $\quad 1, \quad \Phi(v), \quad \Phi^{*}(v) \quad \forall v \in \mathcal{V}_{\mathrm{P}}$
CCR relations:

$$
[\Phi(v), \Phi(w)]=\left[\Phi^{*}(v), \Phi^{*}(w)\right]=0
$$

$$
\left[\Phi(v), \Phi^{*}(w)\right]=\sigma(v, w) \mathbb{1}
$$

Linear Gauge Theories II: Quantum Theory

Let $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ be a linear gauge theory on (M, g) and G_{1} be the causal propagator of D_{1}.

$$
\mathcal{V}_{\mathrm{P}}:=\frac{\operatorname{ker}\left(\left.\mathrm{K}^{*}\right|_{\Gamma_{\mathrm{c}}}\right)}{\operatorname{ran}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{c}}}\right)} \xrightarrow[\cong]{\left[\mathrm{G}_{1}\right]} \frac{\operatorname{ker}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{sc}}}\right)}{\operatorname{ran}\left(\left.\mathrm{K}\right|_{\Gamma_{\mathrm{sc}}}\right)}
$$

Algebraic Quantization:

- Step 1: Classical phase space $\left(\mathcal{V}_{\mathrm{P}}, \sigma([\cdot],[\cdot]):=\mathrm{i}\left(\cdot, \mathrm{G}_{1} \cdot\right)_{\mathrm{V}_{1}}\right)$ with $(\cdot, \cdot)_{\mathrm{V}_{i}}:=\int_{\mathrm{M}}\langle\cdot, \cdot\rangle_{\mathrm{V}_{i}} \operatorname{vol}_{g}$.

$$
\left(\mathcal{V}_{\mathrm{P}}, \sigma\right) \quad \rightarrow \quad \operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \sigma\right)
$$

$\operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \sigma\right) \ldots$ unital $*$-algebra constructed as follows:

$$
\text { generators: } \quad \mathbb{1}, \quad \Phi(v), \quad \Phi^{*}(v) \quad \forall v \in \mathcal{V}_{\mathrm{P}}
$$

CCR relations:

$$
[\Phi(v), \Phi(w)]=\left[\Phi^{*}(v), \Phi^{*}(w)\right]=0
$$

$$
\left[\Phi(v), \Phi^{*}(w)\right]=\sigma(v, w) \mathbb{1}
$$

- Step 2: Construct (quasi-free) Hadamard State $\omega: \operatorname{CCR}\left(\mathcal{V}_{\mathrm{P}}, \sigma\right) \rightarrow \mathbb{C}$:

$$
\text { covariances: } \Lambda^{+}(v, w):=\omega\left(\Phi(v) \Phi^{*}(w)\right), \quad \Lambda^{-}(v, w):=\omega\left(\Phi^{*}(w) \Phi(v)\right)
$$

Hadamard condition: $\mathrm{WF}^{\prime}\left(\lambda^{ \pm}\right) \subset \mathcal{N}^{ \pm} \times \mathcal{N}^{ \pm} \quad$ where $\quad \Lambda^{ \pm}([s],[t])=:\left(s, \lambda^{ \pm} t\right)_{\mathrm{V}_{1}}$

$$
\left(\mathcal{N}=\mathcal{N}^{+} \cup \mathcal{N}^{-} \ldots \text { light cone in } \mathrm{T}^{*} \mathrm{M}\right)
$$

Known Results

Under some additional assumption on (M, g), Hadamard states for linear gauge theories have been constructed with various different approaches:

Maxwell Theory:

- Furlani (1995)
- Fewster-Pfenning (2003)
- Dappiaggi-Siemssen (2011)
- Finster-Strohmaier (2013)
(M, g) static and Σ compact
Σ compact and simply-connected asymptotically flat spacetimes

Linearized Yang-Mills Theory:

- Hollands (2008)
- Gérard-Wrochna (2014)

Linearized Gravity:

- Fewster-Hunt (2012), Hunt (2012)
- Brunetti-Fredenhagen-Rejzner (2013)
- Benini-Dappiaggi-Murro (2014)
- Gérard-Murro-Wrochna (2022)
Σ compact and simply-connected Σ compact or \mathbb{R}^{3}

Fock vacuum in Minkowski is Hadamard (M, g) ultrastatic and Σ compact asymptotically flat spacetimes; "radiative" observables partial results

Construction of Hadamard States

$\rho_{i}: \operatorname{ker}\left(\left.\mathrm{D}_{i}\right|_{\Gamma_{\mathrm{sc}}}\right) \rightarrow \Gamma_{\mathrm{c}}\left(\mathrm{V}_{\rho_{i}}\right) \ldots$ Cauchy data maps of D_{i} for suitable bundles $\mathrm{V}_{\rho_{i}}$ over Σ.

$$
\left(\mathcal{V}_{\mathrm{P}}, \sigma\right) \xrightarrow{\left[\rho_{1} \mathrm{G}_{1}\right]}\left(\mathcal{V}_{\Sigma}:=\frac{\operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{\mathrm{c}}}\right)}{\operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{\Gamma_{\mathrm{c}}}\right)}, \sigma_{\Sigma}([\cdot],[\cdot]):=\mathrm{i}\left(\cdot, \mathrm{G}_{1, \Sigma} \cdot\right)_{\rho_{\rho_{1}}}\right)
$$

where: $-\mathrm{K}_{\Sigma}:=\rho_{1} \mathrm{~K} \mathcal{U}_{0}$ and $\mathrm{K}_{\Sigma}^{\dagger}$ adjoint w.r.t. σ_{Σ} with $\mathcal{U}_{i}:=\rho_{i}^{-1}$.

- $\mathrm{G}_{i, \Sigma}: \Gamma\left(\mathrm{V}_{\rho_{i}}\right) \rightarrow \Gamma\left(\mathrm{V}_{\rho_{i}}\right)$ uniquely determined by $\mathrm{G}_{i}=\left(\rho_{i} \mathrm{G}_{i}\right)^{*} \mathrm{G}_{i, \Sigma}\left(\rho_{i} \mathrm{G}_{i}\right)$.

Construction of Hadamard States

$\rho_{i}: \operatorname{ker}\left(\left.\mathrm{D}_{i}\right|_{\Gamma_{\mathrm{sc}}}\right) \rightarrow \Gamma_{\mathrm{c}}\left(\mathrm{V}_{\rho_{i}}\right) \ldots$ Cauchy data maps of D_{i} for suitable bundles $\mathrm{V}_{\rho_{i}}$ over Σ.

$$
\left(\mathcal{V}_{\mathrm{P}}, \sigma\right) \xrightarrow{\left[\rho_{1} \mathrm{G}_{1}\right]}\left(\mathcal{V}_{\Sigma}:=\frac{\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid \Gamma_{\mathrm{c}}\right)}{\operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{\Gamma_{\mathrm{c}}}\right)}, \sigma_{\Sigma}([\cdot],[\cdot]):=\mathrm{i}\left(\cdot, \mathrm{G}_{1, \Sigma} \cdot\right)_{\rho_{\rho_{1}}}\right)
$$

where: $-\mathrm{K}_{\Sigma}:=\rho_{1} \mathrm{~K} \mathcal{U}_{0}$ and $\mathrm{K}_{\Sigma}^{\dagger}$ adjoint w.r.t. σ_{Σ} with $\mathcal{U}_{i}:=\rho_{i}^{-1}$.

- $\mathrm{G}_{i, \Sigma}: \Gamma\left(\mathrm{V}_{\rho_{i}}\right) \rightarrow \Gamma\left(\mathrm{V}_{\rho_{i}}\right)$ uniquely determined by $\mathrm{G}_{i}=\left(\rho_{i} \mathrm{G}_{i}\right)^{*} \mathrm{G}_{i, \Sigma}\left(\rho_{i} \mathrm{G}_{i}\right)$.

Proposition (Gérard-Wrochna 2014; Gérard-Murro-Wrochna 2022)

Suppose $c^{ \pm}: \Gamma_{\mathrm{c}}\left(\mathrm{V}_{\rho_{1}}\right) \rightarrow \Gamma\left(\mathrm{V}_{\rho_{1}}\right)$ (linear, continuous) are s.t.
(i) $\left(c^{ \pm}\right)^{\dagger}=c^{ \pm} \quad$ and $\quad c^{ \pm}\left(\operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{\Gamma_{\mathrm{c}}}\right)\right) \subset \operatorname{ran}\left(\mathrm{K}_{\Sigma}\right)$;
(ii) $c^{+}+c^{-}=$id modulo operator mapping to $\operatorname{ran}\left(\mathrm{K}_{\Sigma}\right)$;
(iii) $\pm \sigma_{\Sigma}\left(\mathfrak{f}, c^{ \pm} \mathfrak{f}\right) \geq 0 \quad$ for any $\quad \mathfrak{f} \in \operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{\mathrm{c}}}\right)$;
(iv) $\mathrm{WF}^{\prime}\left(\mathcal{U}_{1} c_{1}^{ \pm}\right) \subset\left(\mathcal{N}^{ \pm} \cup F\right) \times \mathrm{T}^{*} \Sigma$ where $\quad F \subset \mathrm{~T}^{*} \mathrm{M} \backslash \mathcal{N}$ is conic.

Then $\quad \lambda^{ \pm}:=\left(\rho_{1} \mathrm{G}_{1}\right)^{*}\left(\pm \mathrm{i} \mathrm{G}_{1, \Sigma}\right) c^{ \pm}\left(\rho_{1} \mathrm{G}_{1}\right) \quad$ defines a quasifree Hadamard state.

Difficulties and Proposal

Difficulties:

- fibre metric not positive-definite \Rightarrow positivity hard to achieve.
- Ψ DO calculus nice for Hadamard property, but conflicting with positivity \& gauge-invariance.

Difficulties and Proposal

Difficulties:

- fibre metric not positive-definite \Rightarrow positivity hard to achieve.
- Ψ DO calculus nice for Hadamard property, but conflicting with positivity \& gauge-invariance.

Proposal:

- Fix the gauge degrees of freedom completely:

$$
\mathcal{V}_{\Sigma}:=\frac{\operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{\mathrm{c}}}\right)}{\operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{\Gamma_{\mathrm{c}}}\right)} \xrightarrow{\mathrm{T}_{\Sigma}} \quad \mathcal{V}_{\mathrm{R}}:=\operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid \Gamma_{\mathrm{c}}\right) \cap \operatorname{ker}\left(\left.\mathrm{R}_{\Sigma}^{\dagger}\right|_{\Gamma_{\mathrm{c}}}\right)
$$

where $R_{\Sigma}^{\dagger} \mathfrak{f}=0$ is an additional gauge-fixing, s.t.
(i) no residual gauge freedom.
(ii) fibre metric on \mathcal{V}_{R} is positive.

- Construct state on \mathcal{V}_{R} using techniques of Gérard-Wrochna.
- Pulling back with projector T_{Σ}.

Maxwell's Theory and Cauchy Radiation Gauge

Hermitian bundles $\quad\left(\mathrm{V}_{k},\langle\cdot, \cdot\rangle \mathrm{V}_{k}\right): \quad\left\{\begin{array}{l}\mathrm{V}_{k}:=\mathbb{C} \otimes \bigwedge^{k} \mathrm{~T}^{*} \mathrm{M}, \\ (\cdot, \cdot) \mathrm{V}_{k}:=\frac{1}{k!} \int_{\mathrm{M}}\left(g^{-1}\right)^{\otimes k}(\cdot, \cdot) \operatorname{vol}_{g}\end{array}\right.$
Maxwell's Theory: - $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ with $\mathrm{P}:=\delta \mathrm{d}$ and $\mathrm{K}:=\mathrm{d}$.

- $\mathrm{D}_{i}:=\square_{i}$ where $\square_{i}=\delta \mathrm{d}+\mathrm{d} \delta$.
- Canonical gauge condition: $\mathrm{K}^{*} A=\delta A=0$.
(Lorenz Gauge)

Maxwell's Theory and Cauchy Radiation Gauge

Hermitian bundles $\quad\left(\mathrm{V}_{k},\langle\cdot, \cdot\rangle \mathrm{V}_{k}\right): \quad\left\{\begin{array}{l}\mathrm{V}_{k}:=\mathbb{C} \otimes \bigwedge^{k} \mathrm{~T}^{*} \mathrm{M}, \\ (\cdot, \cdot) \mathrm{V}_{k}:=\frac{1}{k!} \int_{\mathrm{M}}\left(g^{-1}\right)^{\otimes k}(\cdot, \cdot) \operatorname{vol}_{g}\end{array}\right.$
Maxwell's Theory: - $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ with $\mathrm{P}:=\delta \mathrm{d}$ and $\mathrm{K}:=\mathrm{d}$.

- $\mathrm{D}_{i}:=\square_{i}$ where $\square_{i}=\delta \mathrm{d}+\mathrm{d} \delta$.
- Canonical gauge condition: $\mathrm{K}^{*} A=\delta A=0$. (Lorenz Gauge)

Definition

Let $A=A_{0} \mathrm{~d} t+A_{\Sigma} \in \Omega^{1}(\mathrm{M})$. We call Cauchy radiation gauge (CR) the condition

$$
\left.A_{0}\right|_{\Sigma}=\left.\nabla_{0} A_{0}\right|_{\Sigma}=0, \quad \& \quad \delta A=0 .
$$

Maxwell's Theory and Cauchy Radiation Gauge

Hermitian bundles $\quad\left(\mathrm{V}_{k},\langle\cdot, \cdot\rangle \mathrm{V}_{k}\right): \quad\left\{\begin{array}{l}\mathrm{V}_{k}:=\mathbb{C} \otimes \bigwedge^{k} \mathrm{~T}^{*} \mathrm{M}, \quad \Gamma\left(\mathrm{V}_{k}\right)=\Omega^{k}(\mathrm{M} ; \mathbb{C}) \\ (\cdot, \cdot) \mathrm{V}_{k}:=\frac{1}{k!} \int_{\mathrm{M}}\left(g^{-1}\right)^{\otimes k}(\cdot, \cdot) \operatorname{vol}_{g}\end{array}\right.$
Maxwell's Theory: - $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ with $\mathrm{P}:=\delta \mathrm{d}$ and $\mathrm{K}:=\mathrm{d}$.

- $\mathrm{D}_{i}:=\square_{i}$ where $\square_{i}=\delta \mathrm{d}+\mathrm{d} \delta$.
- Canonical gauge condition: $\mathrm{K}^{*} A=\delta A=0$. (Lorenz Gauge)

Definition

Let $A=A_{0} \mathrm{~d} t+A_{\Sigma} \in \Omega^{1}(\mathrm{M})$. We call Cauchy radiation gauge (CR) the condition

$$
\left.A_{0}\right|_{\Sigma}=\left.\nabla_{0} A_{0}\right|_{\Sigma}=0, \quad \& \quad \delta A=0
$$

$\hookrightarrow(\mathrm{M}, g)$ ultrastatic and $A \in \operatorname{ker}\left(\left.\mathrm{P}\right|_{\Omega_{\mathrm{sc}}^{1}}\right)$:
(CR)
$\Leftrightarrow \quad \underbrace{\delta A=A_{0}=0}_{\text {radiation gauge }}$
Σ non-compact
\Leftrightarrow
$\underbrace{\delta_{\Sigma} A_{\Sigma}=0}_{\text {Coulomb Gauge }}$

Maxwell's Theory and Cauchy Radiation Gauge

Hermitian bundles $\quad\left(\mathrm{V}_{k},\langle\cdot, \cdot\rangle \mathrm{V}_{k}\right): \quad\left\{\begin{array}{l}\mathrm{V}_{k}:=\mathbb{C} \otimes \bigwedge^{k} \mathrm{~T}^{*} \mathrm{M}, \quad \Gamma\left(\mathrm{V}_{k}\right)=\Omega^{k}(\mathrm{M} ; \mathbb{C}) \\ (\cdot, \cdot) \mathrm{V}_{k}:=\frac{1}{k!} \int_{\mathrm{M}}\left(g^{-1}\right)^{\otimes k}(\cdot, \cdot) \operatorname{vol}_{g}\end{array}\right.$
Maxwell's Theory: - $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{P}, \mathrm{K}\right)$ with $\mathrm{P}:=\delta \mathrm{d}$ and $\mathrm{K}:=\mathrm{d}$.

- $\mathrm{D}_{i}:=\square_{i}$ where $\square_{i}=\delta \mathrm{d}+\mathrm{d} \delta$.
- Canonical gauge condition: $\mathrm{K}^{*} A=\delta A=0$. (Lorenz Gauge)

Definition

Let $A=A_{0} \mathrm{~d} t+A_{\Sigma} \in \Omega^{1}(\mathrm{M})$. We call Cauchy radiation gauge (CR) the condition

$$
\left.A_{0}\right|_{\Sigma}=\left.\nabla_{0} A_{0}\right|_{\Sigma}=0, \quad \& \quad \delta A=0 .
$$

$\hookrightarrow(\mathrm{M}, g)$ ultrastatic and $A \in \operatorname{ker}\left(\left.\mathrm{P}\right|_{\Omega_{\mathrm{sc}}^{1}}\right)$:

$$
(\mathrm{CR}) \Leftrightarrow \underbrace{\delta A=A_{0}=0}_{\text {radiation gauge }} \quad \stackrel{\Sigma \text { non-compact }}{\Leftrightarrow} \quad \underbrace{\delta_{\Sigma} A_{\Sigma}=0}_{\text {Coulomb Gauge }}
$$

$\hookrightarrow A \in \Omega_{\mathrm{sc}}^{1}(\mathrm{M}) \Rightarrow$ Find $f \in C_{\mathrm{sc}}^{\infty}(\mathrm{M})$ s.t. $A^{\prime}:=A+\mathrm{d} f$ satisfies $(\mathrm{CR}) \Leftrightarrow$

$$
\left\{\begin{array}{l}
\square_{0} f=-\delta A \\
\pi=-\left.A_{0}\right|_{\Sigma} \\
\vec{\Delta}_{0} a=-\left.\delta_{\Sigma} A_{\Sigma}\right|_{\Sigma}
\end{array}\right.
$$

with $\vec{\Delta}_{0}=\delta_{\Sigma} \mathrm{d}_{\Sigma}$ and $a:=\left.f\right|_{\Sigma}, \pi:=\left.\nabla_{0} f\right|_{\Sigma}$.

The Poisson Equation on Complete Riemannian Manifolds

$(\Sigma, h) \ldots$ complete and connected Riemannian manifold.
Poisson Equation: $\quad \vec{\Delta}_{0} f=\delta_{\Sigma} \omega \quad$ for $\omega \in \Omega^{1}(\Sigma) \quad(*)$

Observation: (*) equivalent to $\omega=\mathrm{d}_{\Sigma} f+\beta$ for $\beta \in \operatorname{ker}\left(\delta_{\Sigma}\right) \quad \Rightarrow$ Hodge-type decomposition!

The Poisson Equation on Complete Riemannian Manifolds

$(\Sigma, h) \ldots$ complete and connected Riemannian manifold.
Poisson Equation: $\quad \vec{\Delta}_{0} f=\delta_{\Sigma} \omega \quad$ for $\omega \in \Omega^{1}(\Sigma) \quad(*)$

Observation: $(*)$ equivalent to $\omega=\mathrm{d}_{\Sigma} f+\beta$ for $\beta \in \operatorname{ker}\left(\delta_{\Sigma}\right) \quad \Rightarrow$ Hodge-type decomposition!

- Σ compact: Hodge decomposition $\Omega^{1}(\Sigma) \cong \operatorname{ran}\left(\mathrm{d}_{\Sigma}\right) \oplus \operatorname{ker}\left(\delta_{\Sigma}\right)$ and $\operatorname{ker}\left(\vec{\Delta}_{0}\right)=\{$ const $\}$. $\Rightarrow(*)$ has a unique solution (up to constant)

The Poisson Equation on Complete Riemannian Manifolds

$(\Sigma, h) \ldots$ complete and connected Riemannian manifold.
Poisson Equation: $\quad \vec{\Delta}_{0} f=\delta_{\Sigma} \omega \quad$ for $\omega \in \Omega^{1}(\Sigma) \quad(*)$

Observation: (*) equivalent to $\omega=\mathrm{d}_{\Sigma} f+\beta$ for $\beta \in \operatorname{ker}\left(\delta_{\Sigma}\right) \quad \Rightarrow$ Hodge-type decomposition!

- Σ compact: Hodge decomposition $\Omega^{1}(\Sigma) \cong \operatorname{ran}\left(\mathrm{d}_{\Sigma}\right) \oplus \operatorname{ker}\left(\delta_{\Sigma}\right)$ and $\operatorname{ker}\left(\vec{\Delta}_{0}\right)=\{$ const $\}$.

$$
\Rightarrow(*) \text { has a unique solution (up to constant) }
$$

- Σ non-compact:
\hookrightarrow For $\omega \in L^{2}\left(\mathbf{T}^{*} \Sigma\right) \cap \Omega^{1}(\Sigma),(*)$ has a unique solution (up to constant) on

$$
\mathcal{D}:=\left\{f \in C^{\infty}(\Sigma) \mid \mathrm{d}_{\Sigma} f \in \overline{\mathrm{~d}_{\Sigma} C_{\mathrm{c}}^{\infty}(\Sigma)} \subset L^{2}\left(\mathrm{~T}^{*} \Sigma\right)\right\}
$$

(Proof requires Hodge-Kodaiara decomposition, elliptic regularity and Poincaré duality.)

The Poisson Equation on Complete Riemannian Manifolds

$(\Sigma, h) \ldots$ complete and connected Riemannian manifold.
Poisson Equation: $\quad \vec{\Delta}_{0} f=\delta_{\Sigma} \omega \quad$ for $\omega \in \Omega^{1}(\Sigma) \quad(*)$

Observation: (*) equivalent to $\omega=\mathrm{d}_{\Sigma} f+\beta$ for $\beta \in \operatorname{ker}\left(\delta_{\Sigma}\right) \quad \Rightarrow$ Hodge-type decomposition!

- Σ compact: Hodge decomposition $\Omega^{1}(\Sigma) \cong \operatorname{ran}\left(\mathrm{d}_{\Sigma}\right) \oplus \operatorname{ker}\left(\delta_{\Sigma}\right)$ and $\operatorname{ker}\left(\vec{\Delta}_{0}\right)=\{$ const $\}$.

$$
\Rightarrow(*) \text { has a unique solution (up to constant) }
$$

- Σ non-compact:
\hookrightarrow For $\omega \in L^{2}\left(\mathbf{T}^{*} \Sigma\right) \cap \Omega^{1}(\Sigma),(*)$ has a unique solution (up to constant) on

$$
\mathcal{D}:=\left\{f \in C^{\infty}(\Sigma) \mid \mathrm{d}_{\Sigma} f \in \overline{\mathrm{~d}_{\Sigma} C_{\mathrm{c}}^{\infty}(\Sigma)} \subset L^{2}\left(\mathrm{~T}^{*} \Sigma\right)\right\}
$$

(Proof requires Hodge-Kodaiara decomposition, elliptic regularity and Poincaré duality.)
\hookrightarrow In the setting of compactly-supported forms, (*) can only be solved for subspace

$$
\Omega_{\mathrm{H}}^{1}(\Sigma):=\operatorname{ran}\left(\left.\mathrm{d}_{\Sigma}\right|_{C_{\mathrm{c}}^{\infty}}\right) \oplus \operatorname{ker}\left(\delta_{\Sigma}\right) .
$$

Note: (i) For $\omega \in \Omega_{\mathrm{H}}^{1}(\Sigma)(*)$ has unique (up to constant) solution on $C_{\mathrm{C}}^{\infty}(\Sigma)$.
(ii) $\Omega_{\mathrm{H}}^{1}(\Sigma)=\Omega^{1}(\Sigma)$ for Σ compact.

Phase Spaces and Complete Gauge Fixing

We call space of radiation k-forms $\Omega_{\mathrm{R}}^{k}(\mathrm{M})$ the subspace of $\Gamma_{\mathrm{sc}}\left(\mathrm{V}_{1}\right)=\Omega_{\mathrm{sc}}^{k}(\mathrm{M} ; \mathbb{C})$ defined by

$$
\Gamma_{\mathrm{R}}\left(\mathrm{~V}_{k}\right):= \begin{cases}\left\{\omega \in \Omega_{\mathrm{sc}}^{k}(\mathrm{M} ; \mathbb{C})\left|\omega_{\Sigma}\right|_{\Sigma} \in \Omega_{\mathrm{H}}^{k}(\Sigma) \otimes_{\mathbb{R}} \mathbb{C}\right\} & \text { for } k>0 \\ C_{\mathrm{sc}}^{\infty}(\mathrm{M} ; \mathbb{C}) & \text { for } k=0\end{cases}
$$

Proposition

For $A \in \Gamma_{\mathrm{R}}\left(\mathrm{V}_{1}\right)$ there exists a unique $f \in \Gamma_{\mathrm{R}}\left(\mathrm{V}_{0}\right)$ (up to constant) s.t. $A+\mathrm{d} f$ satisfies (CR).

Phase Spaces and Complete Gauge Fixing

We call space of radiation k-forms $\Omega_{\mathrm{R}}^{k}(\mathrm{M})$ the subspace of $\Gamma_{\mathrm{sc}}\left(\mathrm{V}_{1}\right)=\Omega_{\mathrm{sc}}^{k}(\mathrm{M} ; \mathbb{C})$ defined by

$$
\Gamma_{\mathrm{R}}\left(\mathrm{~V}_{k}\right):= \begin{cases}\left\{\omega \in \Omega_{\mathrm{sc}}^{k}(\mathrm{M} ; \mathbb{C})\left|\omega_{\Sigma}\right|_{\Sigma} \in \Omega_{\mathrm{H}}^{k}(\Sigma) \otimes_{\mathbb{R}} \mathbb{C}\right\} & \text { for } k>0 \\ C_{\mathrm{sc}}^{\infty}(\mathrm{M} ; \mathbb{C}) & \text { for } k=0\end{cases}
$$

Proposition

For $A \in \Gamma_{\mathrm{R}}\left(\mathrm{V}_{1}\right)$ there exists a unique $f \in \Gamma_{\mathrm{R}}\left(\mathrm{V}_{0}\right)$ (up to constant) s.t. $A+\mathrm{d} f$ satisfies (CR).
Cauchy data map for Maxwell's theory: $\mathrm{V}_{\rho_{1}}:=\left.\left.\mathrm{V}_{1}\right|_{\Sigma} \oplus \mathrm{V}_{1}\right|_{\Sigma}$

$$
\begin{aligned}
\rho_{1}: \Gamma_{\mathrm{sc}}\left(\mathrm{~V}_{1}\right) & \rightarrow \Gamma_{\mathrm{c}}\left(\mathrm{~V}_{\rho_{1}}\right) \cong\left(C^{\infty}(\Sigma ; \mathbb{C})\right)^{2} \oplus\left(\Omega^{1}(\Sigma, \mathbb{C})\right)^{2} \\
A & \left.\mapsto\left(A_{0}, \nabla_{0} A_{0}, A_{\Sigma}, \nabla_{0} A_{\Sigma}\right)\right|_{\Sigma}
\end{aligned}
$$

Phase Spaces and Complete Gauge Fixing

We call space of radiation k-forms $\Omega_{\mathrm{R}}^{k}(\mathrm{M})$ the subspace of $\Gamma_{\mathrm{sc}}\left(\mathrm{V}_{1}\right)=\Omega_{\mathrm{sc}}^{k}(\mathrm{M} ; \mathbb{C})$ defined by

$$
\Gamma_{\mathrm{R}}\left(\mathrm{~V}_{k}\right):= \begin{cases}\left\{\omega \in \Omega_{\mathrm{sc}}^{k}(\mathrm{M} ; \mathbb{C})\left|\omega_{\Sigma}\right|_{\Sigma} \in \Omega_{\mathrm{H}}^{k}(\Sigma) \otimes_{\mathbb{R}} \mathbb{C}\right\} & \text { for } k>0 \\ C_{\mathrm{sc}}^{\infty}(\mathrm{M} ; \mathbb{C}) & \text { for } k=0\end{cases}
$$

Proposition

For $A \in \Gamma_{\mathrm{R}}\left(\mathrm{V}_{1}\right)$ there exists a unique $f \in \Gamma_{\mathrm{R}}\left(\mathrm{V}_{0}\right)$ (up to constant) s.t. $A+\mathrm{d} f$ satisfies (CR).
Cauchy data map for Maxwell's theory: $\mathrm{V}_{\rho_{1}}:=\left.\left.\mathrm{V}_{1}\right|_{\Sigma} \oplus \mathrm{V}_{1}\right|_{\Sigma}$

$$
\begin{aligned}
\rho_{1}: \Gamma_{\mathrm{sc}}\left(\mathrm{~V}_{1}\right) & \rightarrow \Gamma_{\mathrm{c}}\left(\mathrm{~V}_{\rho_{1}}\right) \cong\left(C^{\infty}(\Sigma ; \mathbb{C})\right)^{2} \oplus\left(\Omega^{1}(\Sigma, \mathbb{C})\right)^{2} \\
A & \left.\mapsto\left(A_{0}, \nabla_{0} A_{0}, A_{\Sigma}, \nabla_{0} A_{\Sigma}\right)\right|_{\Sigma}
\end{aligned}
$$

$$
\mathcal{V}_{\mathrm{P}}:=\frac{\operatorname{ker}\left(\left.\mathrm{K}^{*}\right|_{\Gamma_{\mathrm{G}}}\right)}{\operatorname{ran}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{c}}}\right)} \xrightarrow[\cong]{\left[\rho_{1} \mathrm{G}_{1}\right]} \mathcal{V}_{\Sigma}:=\frac{\operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{\mathrm{H}}}\right)}{\operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{\Gamma_{\mathrm{c}}}\right)} \xrightarrow[\cong]{\cong} \mathcal{V}_{\mathrm{R}}:=\operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{\mathrm{H}}}\right) \cap \operatorname{ker}\left(\mathrm{R}_{\Sigma}^{\dagger} \mid \Gamma_{\mathrm{H}}\right)
$$

where: $\quad \mathrm{R}_{\Sigma}^{\dagger}: \Gamma\left(\mathrm{V}_{\rho_{1}}\right) \rightarrow \Gamma\left(\mathrm{V}_{\rho_{1}}\right), \quad \mathrm{R}_{\Sigma}^{\dagger}\left(a_{0}, \pi_{0}, a_{\Sigma}, \pi_{\Sigma}\right):=\left(0,0, a_{\Sigma}, \pi_{\Sigma}\right)$

- $\Gamma_{\mathrm{G}}\left(\mathrm{V}_{1}\right):=\mathrm{G}_{1}^{-1}\left(\Gamma_{\mathrm{R}}\left(\mathrm{V}_{1}\right)\right)$
- $\Gamma_{\mathrm{H}}\left(\mathrm{V}_{\rho_{1}}\right) \subset \Gamma_{\mathrm{c}}\left(\mathrm{V}_{\rho_{1}}\right)$ subspace of initial data $\left(a_{0}, \pi_{0}, a_{\Sigma}, \pi_{\Sigma}\right)$ s.t. $a_{\Sigma} \in \Omega_{\mathrm{H}}^{1}(\Sigma)$.

Phase Spaces and Complete Gauge Fixing

We call space of radiation k-forms $\Omega_{\mathrm{R}}^{k}(\mathrm{M})$ the subspace of $\Gamma_{\mathrm{sc}}\left(\mathrm{V}_{1}\right)=\Omega_{\mathrm{sc}}^{k}(\mathrm{M} ; \mathbb{C})$ defined by

$$
\Gamma_{\mathrm{R}}\left(\mathrm{~V}_{k}\right):= \begin{cases}\left\{\omega \in \Omega_{\mathrm{sc}}^{k}(\mathrm{M} ; \mathbb{C})\left|\omega_{\Sigma}\right|_{\Sigma} \in \Omega_{\mathrm{H}}^{k}(\Sigma) \otimes_{\mathbb{R}} \mathbb{C}\right\} & \text { for } k>0 \\ C_{\mathrm{sc}}^{\infty}(\mathrm{M} ; \mathbb{C}) & \text { for } k=0\end{cases}
$$

Proposition

For $A \in \Gamma_{\mathrm{R}}\left(\mathrm{V}_{1}\right)$ there exists a unique $f \in \Gamma_{\mathrm{R}}\left(\mathrm{V}_{0}\right)$ (up to constant) s.t. $A+\mathrm{d} f$ satisfies (CR).
Cauchy data map for Maxwell's theory: $\mathrm{V}_{\rho_{1}}:=\left.\left.\mathrm{V}_{1}\right|_{\Sigma} \oplus \mathrm{V}_{1}\right|_{\Sigma}$

$$
\begin{aligned}
\rho_{1}: \Gamma_{\mathrm{sc}}\left(\mathrm{~V}_{1}\right) & \rightarrow \Gamma_{\mathrm{c}}\left(\mathrm{~V}_{\rho_{1}}\right) \cong\left(C^{\infty}(\Sigma ; \mathbb{C})\right)^{2} \oplus\left(\Omega^{1}(\Sigma, \mathbb{C})\right)^{2} \\
A & \left.\mapsto\left(A_{0}, \nabla_{0} A_{0}, A_{\Sigma}, \nabla_{0} A_{\Sigma}\right)\right|_{\Sigma}
\end{aligned}
$$

$$
\mathcal{V}_{\mathrm{P}}:=\frac{\operatorname{ker}\left(\left.\mathrm{K}^{*}\right|_{\Gamma_{\mathrm{G}}}\right)}{\operatorname{ran}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{c}}}\right)} \xrightarrow[\cong]{\left[\rho_{1} \mathrm{G}_{1}\right]} \mathcal{V}_{\Sigma}:=\frac{\operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{\mathrm{H}}}\right)}{\operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{\Gamma_{\mathrm{c}}}\right)} \xrightarrow[\cong]{\cong} \mathcal{V}_{\mathrm{R}}:=\operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{\mathrm{H}}}\right) \cap \operatorname{ker}\left(\mathrm{R}_{\Sigma}^{\dagger} \mid \Gamma_{\mathrm{H}}\right)
$$

where: $\quad \mathrm{R}_{\Sigma}^{\dagger}: \Gamma\left(\mathrm{V}_{\rho_{1}}\right) \rightarrow \Gamma\left(\mathrm{V}_{\rho_{1}}\right), \quad \mathrm{R}_{\Sigma}^{\dagger}\left(a_{0}, \pi_{0}, a_{\Sigma}, \pi_{\Sigma}\right):=\left(0,0, a_{\Sigma}, \pi_{\Sigma}\right)$

- $\Gamma_{\mathrm{G}}\left(\mathrm{V}_{1}\right):=\mathrm{G}_{1}^{-1}\left(\Gamma_{\mathrm{R}}\left(\mathrm{V}_{1}\right)\right)$
- $\Gamma_{\mathrm{H}}\left(\mathrm{V}_{\rho_{1}}\right) \subset \Gamma_{\mathrm{c}}\left(\mathrm{V}_{\rho_{1}}\right)$ subspace of initial data $\left(a_{0}, \pi_{0}, a_{\Sigma}, \pi_{\Sigma}\right)$ s.t. $a_{\Sigma} \in \Omega_{\mathrm{H}}^{1}(\Sigma)$.

Note: T_{Σ} represents the complete gauge fixing on the level of initial data.

Construction of Hadamard States I: The Projector T_{Σ}

By the standard deformation argument, we assume $(\mathrm{M}, g) \quad$ to be ultrastatic and of bounded geometry . In this case, the phase space of initial data in the gauge (CR) is given by

$$
\mathcal{V}_{\mathrm{R}}=\left\{\left(a_{0}, \pi_{0}, a_{\Sigma}, \pi_{\Sigma}\right) \in \Gamma_{\mathrm{H}}\left(\mathrm{~V}_{\rho_{1}}\right) \mid \delta_{\Sigma} a_{\Sigma}=\delta_{\Sigma} \pi_{\Sigma}=0\right\} .
$$

\Rightarrow How does the projector $\mathrm{T}_{\Sigma}:=\mathbb{1}-\mathrm{K}_{\Sigma}\left(\mathrm{R}_{\Sigma} \mathrm{K}_{\Sigma}\right)^{-1} \mathrm{R}_{\Sigma}$ look like in this case?

Construction of Hadamard States I: The Projector T_{Σ}

By the standard deformation argument, we assume $(\mathrm{M}, g) \quad$ to be ultrastatic and of bounded geometry . In this case, the phase space of initial data in the gauge (CR) is given by

$$
\mathcal{V}_{\mathrm{R}}=\left\{\left(a_{0}, \pi_{0}, a_{\Sigma}, \pi_{\Sigma}\right) \in \Gamma_{\mathrm{H}}\left(\mathrm{~V}_{\rho_{1}}\right) \mid \delta_{\Sigma} a_{\Sigma}=\delta_{\Sigma} \pi_{\Sigma}=0\right\}
$$

\Rightarrow How does the projector $\mathrm{T}_{\Sigma}:=\mathbb{1}-\mathrm{K}_{\Sigma}\left(\mathrm{R}_{\Sigma} \mathrm{K}_{\Sigma}\right)^{-1} \mathrm{R}_{\Sigma}$ look like in this case?
Observation: There is a well-defined projector $\Omega_{\mathrm{H}}^{1}(\Sigma)=\operatorname{ran}\left(\left.\mathrm{d}_{\Sigma}\right|_{C_{\mathrm{c}}^{\infty}}\right) \oplus \operatorname{ker}\left(\delta_{\Sigma}\right) \rightarrow \operatorname{ker}\left(\delta_{\Sigma}\right)$:

$$
\pi_{\delta}:=\mathbb{1}-\mathrm{d}_{\Sigma} \vec{\Delta}_{0}^{-1} \delta_{\Sigma}
$$

Construction of Hadamard States I: The Projector T_{Σ}

By the standard deformation argument, we assume

$$
(\mathrm{M}, g) \quad \text { to be ultrastatic and of bounded geometry }
$$

In this case, the phase space of initial data in the gauge (CR) is given by

$$
\mathcal{V}_{\mathrm{R}}=\left\{\left(a_{0}, \pi_{0}, a_{\Sigma}, \pi_{\Sigma}\right) \in \Gamma_{\mathrm{H}}\left(\mathrm{~V}_{\rho_{1}}\right) \mid \delta_{\Sigma} a_{\Sigma}=\delta_{\Sigma} \pi_{\Sigma}=0\right\}
$$

\Rightarrow How does the projector $\mathrm{T}_{\Sigma}:=\mathbb{1}-\mathrm{K}_{\Sigma}\left(\mathrm{R}_{\Sigma} \mathrm{K}_{\Sigma}\right)^{-1} \mathrm{R}_{\Sigma}$ look like in this case?
Observation: There is a well-defined projector $\Omega_{\mathrm{H}}^{1}(\Sigma)=\operatorname{ran}\left(\left.\mathrm{d}_{\Sigma}\right|_{C_{\mathrm{c}}^{\infty}}\right) \oplus \operatorname{ker}\left(\delta_{\Sigma}\right) \rightarrow \operatorname{ker}\left(\delta_{\Sigma}\right)$:

$$
\pi_{\delta}:=\mathbb{1}-\mathrm{d}_{\Sigma} \vec{\Delta}_{0}^{-1} \delta_{\Sigma}
$$

Proposition

The projection $\mathrm{T}_{\Sigma}: \operatorname{ker}\left(\mathrm{K}_{\Sigma}^{\dagger} \mid \Gamma_{\mathrm{H}}\right) \rightarrow \operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{H}}\right)$ is given by

$$
\mathrm{T}_{\Sigma}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \pi_{\delta} & 0 \\
0 & 0 & 0 & \pi_{\delta}
\end{array}\right)
$$

Furthermore, $\operatorname{ker}\left(T_{\Sigma}\right)=\operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{H}}\right)$ and $\operatorname{ran}\left(\mathrm{T}_{\Sigma}\right)=\mathcal{V}_{\mathrm{R}}$. Hence, $\mathrm{T}_{\Sigma}: \mathcal{V}_{\Sigma} \rightarrow \mathcal{V}_{\mathrm{R}}$ is well-defined.
Note: T_{Σ} extentible to $\mathrm{T}_{\Sigma}: L^{2}\left(\mathrm{~V}_{\rho_{1}}\right) \rightarrow L^{2}\left(\mathrm{~V}_{\rho_{1}}\right)$ with $L^{2}\left(\mathrm{~V}_{\rho_{1}}\right) \ldots$ smooth L^{2} initial data.

Construction of Hadamard States II: Covariances

\Rightarrow Shubin's Ψ DO calculus on manifolds of bounded geometry (Shubin 1992):
\hookrightarrow Construct invertible square roots ε_{i} of $\vec{\Delta}_{i}$ (Gérard-Murro-Wrochna 2022).
\hookrightarrow Using spectral calculus, show that ε_{1} commutes with π_{δ} up to smoothing.

Construction of Hadamard States II: Covariances

\Rightarrow Shubin's Ψ DO calculus on manifolds of bounded geometry (Shubin 1992):
\hookrightarrow Construct invertible square roots ε_{i} of $\vec{\Delta}_{i}$ (Gérard-Murro-Wrochna 2022).
\hookrightarrow Using spectral calculus, show that ε_{1} commutes with π_{δ} up to smoothing.

Consider :

$$
\pi^{ \pm}:=\frac{1}{2}\left(\begin{array}{cccc}
\mathbb{1} & \pm \varepsilon_{0}^{-1} & 0 & 0 \\
\pm \varepsilon_{0} & \mathbb{1} & 0 & 0 \\
0 & 0 & \mathbb{1} & \pm \varepsilon_{1}^{-1} \\
0 & 0 & \pm \varepsilon_{1} & \mathbb{1}
\end{array}\right)
$$

Note: Since $\mathrm{D}_{i}=\left(\partial_{t}+\epsilon_{i}\right)\left(\partial_{t}-\epsilon_{i}\right)$ modulo smoothing, then
Hadamard condition: $\mathrm{WF}^{\prime}\left(U_{1} \pi^{ \pm}\right) \subset\left(\mathcal{N}^{ \pm} \cup F\right) \times \mathrm{T}^{*} \Sigma$ for $F=\{k=0\} \subset \mathrm{T}^{*} \mathrm{M}$

Construction of Hadamard States II: Covariances

\Rightarrow Shubin's Ψ DO calculus on manifolds of bounded geometry (Shubin 1992):
\hookrightarrow Construct invertible square roots ε_{i} of $\vec{\Delta}_{i}$ (Gérard-Murro-Wrochna 2022).
\hookrightarrow Using spectral calculus, show that ε_{1} commutes with π_{δ} up to smoothing.

Consider :

$$
\pi^{ \pm}:=\frac{1}{2}\left(\begin{array}{cccc}
\mathbb{1} & \pm \varepsilon_{0}^{-1} & 0 & 0 \\
\pm \varepsilon_{0} & \mathbb{1} & 0 & 0 \\
0 & 0 & \mathbb{1} & \pm \varepsilon_{1}^{-1} \\
0 & 0 & \pm \varepsilon_{1} & \mathbb{1}
\end{array}\right)
$$

Note: Since $\mathrm{D}_{i}=\left(\partial_{t}+\epsilon_{i}\right)\left(\partial_{t}-\epsilon_{i}\right)$ modulo smoothing, then
Hadamard condition: $\mathrm{WF}^{\prime}\left(U_{1} \pi^{ \pm}\right) \subset\left(\mathcal{N}^{ \pm} \cup F\right) \times \mathrm{T}^{*} \Sigma$ for $F=\{k=0\} \subset \mathrm{T}^{*} \mathrm{M}$

Theorem

$c^{ \pm}:=\mathrm{T}_{\Sigma} \pi^{ \pm} \mathrm{T}_{\Sigma}$ are Cauchy covariances of a Hadamard state on \mathcal{V}_{P}.
Proof (Sketch).
$\hookrightarrow \pi^{ \pm}$maps $\Gamma_{H}^{\infty}\left(\mathrm{V}_{\rho_{1}}\right)$ onto $L^{2}\left(\mathrm{~V}_{\rho_{1}}\right)$, composition well-defined!
$\hookrightarrow\left(c^{+}+c^{-}\right) \mathfrak{f}=T_{\Sigma}^{2} \mathfrak{f}=T_{\Sigma} \mathfrak{f}=\mathfrak{f} \bmod \operatorname{ran}\left(\left.\mathrm{K}_{\Sigma}\right|_{\Gamma_{\mathrm{H}}}\right)$ for $\mathfrak{f} \in \operatorname{ker}\left(\left.\mathrm{K}_{\Sigma}^{\dagger}\right|_{\Gamma_{\mathrm{H}}}\right)$
\hookrightarrow Positivity: $\pm \sigma_{\Sigma}\left(\mathfrak{f}, c^{ \pm} f\right)= \pm \sigma_{\Sigma}\left(\mathfrak{f}, \mathrm{T}_{\Sigma} \pi^{ \pm} \mathrm{T}_{\Sigma} f\right)= \pm \sigma_{\Sigma}\left(\mathrm{T}_{\Sigma} \mathfrak{f}, \pi^{ \pm} \mathrm{T}_{\Sigma} f\right) \geq 0$
\hookrightarrow Hadamard property since T_{Σ} commutes with $\pi^{ \pm}$up to smoothing.

Conclusion and Outlook

What We Have Seen...

\hookrightarrow Cauchy radiation gauge provides complete gauge fixing and makes fibre metric positive.
\hookrightarrow Complete gauge fixing allows to define positive Hadamard states in the usual way.
$\hookrightarrow \Psi$ DO-Projector T_{Σ} allows to pull back to the space of gauge-invariant observables.

Conclusion and Outlook

What We Have Seen...

\hookrightarrow Cauchy radiation gauge provides complete gauge fixing and makes fibre metric positive.
\hookrightarrow Complete gauge fixing allows to define positive Hadamard states in the usual way.
$\hookrightarrow \Psi$ DO-Projector T_{Σ} allows to pull back to the space of gauge-invariant observables.
... Open Questions and Future Work

- Complete gauge fixing useful for positivity \& gauge invariance, but price to pay is reducing space of classical observables.
\hookrightarrow For which non-compact manifolds $\Omega_{\mathrm{H}, \mathrm{c}}^{1}(\Sigma)=\Omega_{\mathrm{c}}^{1}(\Sigma)$?

Conclusion and Outlook

What We Have Seen...

\hookrightarrow Cauchy radiation gauge provides complete gauge fixing and makes fibre metric positive.
\hookrightarrow Complete gauge fixing allows to define positive Hadamard states in the usual way.
$\hookrightarrow \Psi$ DO-Projector T_{Σ} allows to pull back to the space of gauge-invariant observables.
... Open Questions and Future Work

- Complete gauge fixing useful for positivity \& gauge invariance, but price to pay is reducing space of classical observables.
\hookrightarrow For which non-compact manifolds $\Omega_{\mathrm{H}, \mathrm{c}}^{1}(\Sigma)=\Omega_{\mathrm{c}}^{1}(\Sigma)$?
- Apply similar strategy to Higher Gauge Theories (Kalb-Ramond, Maxwell k-forms, etc.).

Conclusion and Outlook

What We Have Seen...

\hookrightarrow Cauchy radiation gauge provides complete gauge fixing and makes fibre metric positive.
\hookrightarrow Complete gauge fixing allows to define positive Hadamard states in the usual way.
$\hookrightarrow \Psi$ DO-Projector T_{Σ} allows to pull back to the space of gauge-invariant observables.
... Open Questions and Future Work

- Complete gauge fixing useful for positivity \& gauge invariance, but price to pay is reducing space of classical observables.
\hookrightarrow For which non-compact manifolds $\Omega_{\mathrm{H}, \mathrm{c}}^{1}(\Sigma)=\Omega_{\mathrm{c}}^{1}(\Sigma)$?
- Apply similar strategy to Higher Gauge Theories (Kalb-Ramond, Maxwell k-forms, etc.).
- Apply similar strategy to Linearized Gravity:
\hookrightarrow Possible gauge choices: de-Donder or TT-gauge with a Cauchy synchronous gauge.
\hookrightarrow Construction of T_{Σ} more challenging from the technical point of view.
\hookrightarrow No deformation argument for gravity! Need to construct $c^{ \pm}$in the general case.

Appendix I: Phase Space of Linear Gauge Theories

Let $\mathrm{P}: \Gamma(\mathrm{V}) \rightarrow \Gamma(\mathrm{V})$ be a self-adjoint linear differential operator on a Hermitian bundle $(\mathrm{V},\langle\cdot, \cdot\rangle)$.

- Linear Observables: $\Gamma_{\mathrm{C}}(\mathrm{V}) \ni s \mapsto \mathcal{O}_{s}$ where $\mathcal{O}_{s}: \Gamma(\mathrm{V}) \rightarrow \mathbb{C}$ defined by

$$
\mathcal{O}_{s}(\varphi):=\int_{\mathrm{M}}\langle s, \varphi\rangle_{\mathrm{V}} \operatorname{vol}_{g}
$$

\hookrightarrow The assignment $s \mapsto \mathcal{O}_{s}$ is injective!

$$
\Rightarrow \text { Linear observables } \Leftrightarrow \Gamma_{\mathrm{c}}(\mathrm{~V})
$$

- Including Dynamics: $\left.\mathcal{O}_{s}\right|_{\operatorname{ker}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{sc}}}\right)}$ no longer faithfully labelled by s !
$\hookrightarrow s, t \in \Gamma_{\mathrm{c}}(\mathrm{V})$ induce same observable on $\operatorname{ker}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{sc}}}\right)$ if and only if $s-t \in \operatorname{ran}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{c}}}\right)$.

$$
\Rightarrow \text { Linear on-shell observables } \Leftrightarrow \frac{\Gamma_{\mathrm{c}}(\mathrm{~V})}{\operatorname{ran}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{c}}}\right)} .
$$

- Gauge Invariance: We want those observables for which

$$
\mathcal{O}_{s}(\varphi+\mathrm{K} \omega)=\mathcal{O}_{s}(\varphi) \quad \forall \omega
$$

or equivalently $0=\mathcal{O}_{s}(\mathrm{~K} \omega)=\mathcal{O}_{\mathrm{K}^{*} s}(\omega)$ for all ω. In other words, $\mathrm{K}^{*} s \stackrel{!}{=} 0$.

$$
\Rightarrow \text { Linear on-shell and gauge-invariant observables } \Leftrightarrow \frac{\operatorname{ker}\left(\left.\mathrm{K}^{*}\right|_{\Gamma_{\mathrm{c}}}\right)}{\operatorname{ran}\left(\left.\mathrm{P}\right|_{\Gamma_{\mathrm{c}}}\right)}
$$

Appendix II: Poisson Equation in the L^{2}-Setting

Let $\omega \in L^{2}\left(\mathrm{~T}^{*} \Sigma\right) \cap \Omega^{1}(\Sigma)$. Need to find $f \in C^{\infty}(\Sigma)$ s.t. $\vec{\Delta}_{0} f=\delta_{\Sigma} \omega$.
Existence:

$$
\text { Hodge-Kodaira: } \quad \begin{align*}
L^{2}\left(\mathrm{~T}^{*} \mathrm{M}\right) & \cong \overline{\mathrm{d}_{\Sigma} C_{\mathrm{c}}(\Sigma)} \oplus \overline{\delta_{\Sigma} \Omega_{\mathrm{c}}^{2}(\Sigma)} \oplus \operatorname{ker}\left(\left.\vec{\Delta}_{1}\right|_{L^{2}}\right) \tag{*}\\
\omega & =\alpha+\gamma+\gamma
\end{align*}
$$

\hookrightarrow If $\omega \in \Omega^{1}(\Sigma)$, then α, β, γ are smooth individually, by elliptic regularity:

$$
\begin{aligned}
\text { (i) } & \left(\mathrm{d}_{\Sigma}+\delta_{\Sigma}\right) \alpha=\delta_{\Sigma} \omega \\
(i i) & \left(\mathrm{d}_{\Sigma}+\delta_{\Sigma}\right) \beta=\mathrm{d}_{\Sigma} \omega \\
\text { (iii) } & \vec{\Delta}_{1 \gamma}=0
\end{aligned}
$$

\hookrightarrow Using Poincaré duality, forms in $\Omega^{1}(\Sigma) \cap \overline{\mathrm{d}_{\Sigma} C_{\mathrm{c}}(\Sigma)}$ are exact, i.e. $\exists f \in C^{\infty}(\Sigma)$ s.t. $\alpha=\mathrm{d}_{\Sigma} f$. $\hookrightarrow \omega=\mathrm{d}_{\Sigma} f+(\beta+\gamma)$ where $\beta+\gamma \in \operatorname{ker}\left(\delta_{\Sigma}\right)$.

UnIQUENESS:

Let $f \in \mathcal{D}$, i.e. $f \in C^{\infty}(\Sigma)$ such that $\mathrm{d}_{\Sigma} f \in \overline{\mathrm{~d}_{\Sigma} C_{\mathrm{c}}(\Sigma)}$.
\hookrightarrow If $\vec{\Delta}_{0} f=0$, then $\omega:=\mathrm{d}_{\Sigma} f \in L^{2}\left(\mathbf{T}^{*} \Sigma\right)$ is closed and co-closed and hence $\omega \in \operatorname{ker}\left(\left.\vec{\Delta}_{1}\right|_{L^{2}}\right)$.
\hookrightarrow Hence, $\omega \in \operatorname{ker}\left(\left.\vec{\Delta}_{1}\right|_{L^{2}}\right)$ and $\omega \in \overline{\mathrm{d}_{\Sigma} C_{\mathrm{C}}(\Sigma)} \quad \Rightarrow \quad \mathrm{By}(*), \omega=0$ and hence $f=$ const.

